首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
基于CNN和农作物光谱纹理特征进行作物分布制图   总被引:1,自引:0,他引:1  
以卷积神经网络(Convolutional Neural Network, CNN)为代表的深度学习技术,在农作物遥感分类制图领域具有广阔的应用前景。以多时相Landsat 8 多光谱遥感影像为数据源,搭建CNN模型对农作物进行光谱特征提取与分类,并与支撑向量机(SVM)常规分类方法进行对比。进一步引入影像纹理信息,利用CNN对农作物光谱和纹理特征进行提取,优化作物分布提取结果。实验表明:① 基于光谱特征的农作物分布提取,验证结果对比显示,CNN对应各类别精度、总体精度均优于SVM,其中二者总体精度分别为95.14%和91.77%;② 引入影像纹理信息后,基于光谱和纹理特征的CNN农作物分类总体精度提高至96.43%,Kappa系数0.952,且分类结果的空间分布更为合理,可有效区分花生、道路等精细地物,说明纹理特征可用于识别不同作物。基于光谱和纹理信息的CNN特征提取,可面向种植结构复杂区域实现农作物精准分类与分布制图。  相似文献   

2.
基于CNN和农作物光谱纹理特征进行作物分布制图   总被引:2,自引:0,他引:2  
以卷积神经网络(Convolutional Neural Network,CNN)为代表的深度学习技术,在农作物遥感分类制图领域具有广阔的应用前景。以多时相Landsat 8多光谱遥感影像为数据源,搭建CNN模型对农作物进行光谱特征提取与分类,并与支撑向量机(SVM)常规分类方法进行对比。进一步引入影像纹理信息,利用CNN对农作物光谱和纹理特征进行提取,优化作物分布提取结果。实验表明:①基于光谱特征的农作物分布提取,验证结果对比显示,CNN对应各类别精度、总体精度均优于SVM,其中二者总体精度分别为95.14%和91.77%;②引入影像纹理信息后,基于光谱和纹理特征的CNN农作物分类总体精度提高至96.43%,Kappa系数0.952,且分类结果的空间分布更为合理,可有效区分花生、道路等精细地物,说明纹理特征可用于识别不同作物。基于光谱和纹理信息的CNN特征提取,可面向种植结构复杂区域实现农作物精准分类与分布制图。  相似文献   

3.
云的光谱和纹理特征统计分析   总被引:3,自引:0,他引:3       下载免费PDF全文
利用静止卫星图像资料建立了夏季白天中低纬地区的11 种云/ 表面类型的样本集, 从中随机 挑选656 个样本, 提取116 个光谱和纹理特征参数并进行统计分析, 通过特征选择组成特征向量, 带入逐个修改聚类和模糊聚类的分类器进行敏感性试验。结果发现, 在反映云特征方面, 光谱特征 是云分类最基本的特征, 比纹理特征明显, 是云分类识别的主要依据; 除去水汽通道的标准差以外 其它光谱特征都比较明显, 红外和水汽通道的特征明显好于可见光通道, 尤其是对中低云和卷云的 描述。纹理特征在反映云特征方面也有一定的代表性, 特别是一阶概率特征中四通道的惯量及水汽 通道的逆差距; 纹理特征引入后分类准确率显著提高, 但在引入一阶概率特征基础上引入灰度级差 矢量特征效果改善并不明显。  相似文献   

4.
地物的"同物异谱"或"异物同谱"问题,使得仅仅依据高光谱影像的光谱信息较难得到理想的分类精度.纹理特征是地物空间分布的重要结构信息,能够一定程度上弥补光谱特征在高光谱遥感影像分类中的不足.纹理特征提取在高光谱遥感影像分类中得到了诸多发展,然而当前的纹理特征方法缺乏较为全面的对比分析.因此,选取旋转不变局部二值模式、简单...  相似文献   

5.
深度卷积神经网络(convolutional neural network,CNN)在许多计算机视觉应用中都取得了突破性进展,但其在纹理分类应用中的性能还未得到深入研究。为此,就CNN模型在图像纹理分类中的应用进行了较为系统的研究。具体而言,将CNN用于提取图像的初步特征,此特征经过PCA(principal component analysis)降维后可得到最终的纹理特征,将其输入到SVM(support vector machine)分类器中便可获得分类标签。在4个常用的纹理数据集上进行了性能测试与分析,结果表明CNN模型在大多纹理数据集上均能取得很好的性能,是一种优秀的纹理特征表示模型,但其对包含旋转和噪声的纹理图像数据集仍不能取得理想结果,需要进一步提升CNN的抗旋转能力和抗噪声能力。另外,有必要构建具有足够多样性的大规模纹理数据集来保征CNN性能的发挥。  相似文献   

6.
综合纹理特征的高光谱遥感图像分类方法   总被引:1,自引:0,他引:1  
吴昊 《计算机工程与设计》2012,33(5):1993-1996,2006
提出了一种基于Gabor滤波的高光谱遥感图像支持向量机(SVM)分类方法,通过将Gabor滤波器组产生的纹理特征引入SVM分类,不仅充分利用了SVM适于解决高维数据分类问题的优势,而且在分类过程中实现了空间结构信息和光谱信息的综合使用,有效利用了高光谱图像“图谱合一”的特性.采用中科院上海技术物理研究所研制的模块化成像光谱仪OMIS (operative modular imaging spectrometry)真实数据进行的实验,实验结果表明,该方法提高了分类效果,分类结果更具有空间连贯性,并且能有效地克服噪声的影响.  相似文献   

7.
基于分形纹理的遥感图像岩性识别方法   总被引:9,自引:0,他引:9  
根据分形理论和遥感影像的特征,本提出一种图像分形纹理计算方法。分形纹理能够准确刻画图像的空间特征信息,在遥感图像分类中作为空间特征信息的补充。利用该方法在河西走廊酒泉盆地的红柳峡地区进行了TM图像的岩性分类实验,当只采用原始TM六个波段图像分类时,精度仅为71.62%,而采用分类纹理信息时分类精度则提高到79.54%。说明分形纹理对岩性空间特征信息有较好的描述,将分形纹理信息配合原始波段进行岩性识别时,总体识别精度达到87.93%.提高了16.3个百分点。因此,该分形纹理对于图像空间特征信息的描述具有重要意义。  相似文献   

8.
程刚  王春恒 《计算机工程》2011,37(5):227-229
利用整体结构特征和局部纹理特征的优势,采用两级分类器对场景图像进行分类。第1级分类器利用全局结构信息得到候选类别,并通过分类结果判定相似类别对;第2级分类器则利用局部纹理信息区分相似类别,采用分类器的级联综合利用场景图像的整体结构信息和局部纹理信息。实验结果表明,该方法能够做到不同场景类别鲁棒分类,有效区分相似场景类别,提高场景图像的分类准确率。  相似文献   

9.
为解决稀疏表示在提取全局纹理特征时受维数限制的问题,提出一种基于随机特征字典的特征提取及分类方法。方法利用稀疏系数中非零系数的分布特点,统计各图像块在稀疏分解过程中字典原子的使用频率,得到能突出纹理在稀疏域类别信息的直方图特征,进而实现分类。为提高分类准确率,通过随机投影将多尺度多方向的小波特征进行融合,并对其训练得到纹理描述能力更强的小波随机特征字典。在分类实验中,其分类准确率达94.79%,并能在噪声、光照条件影响下获得较好的鲁棒性,在分析全局纹理特征方面具有高效、稳定的特点。  相似文献   

10.
利用小波进行基于形状和纹理的图像分类   总被引:5,自引:0,他引:5  
提出一种基于小波的形状和纹理联合特征的图像分类方法。先对图像进行二维小波变换以得到边缘图像,再提取边缘图像的7个边界不变矩组成图像的形状特征向量;在实验中,发现大多数情况下,图像背景的干扰信息大于其对分类的贡献,因此对图像去除其背景,然后在灰度共现矩阵的基础上,计算5个二次统计量作为其纹理特征;最后联合形状和边缘特征向量,并对其进行高斯归一化,用SVM进行分类。结果表明,该方法具有明显的优越性和较强的实用性。  相似文献   

11.
杭州湾海岸线信息的遥感提取及其变迁分析   总被引:1,自引:0,他引:1       下载免费PDF全文
综合利用ISODATA分类、地图综合、离散地物去除和岸线追踪等技术,通过ENVI和ArcGIS实现了海岸线遥感信息的提取。以1979、1987、2000和2005年4期Landsat影像为基础数据,提取了杭州湾海岸线;将提取的目标海岸线重采样为30~960 m等10种空间分辨率,从而计算分维数并分析其变迁。研究表明:1979~2005年杭州湾海岸线长度增加了近37.5 km,其中北岸增加的长度(24.9 km)大于南岸(12.5 km);同时,杭州湾海岸线具有显著的分形特性,其中1979~1987年分维数增大,1987~2000年降低,而2000~2005年则为增大。宁波、绍兴、嘉兴、金山、奉贤和芦潮港6个重点海岸的岸线变迁表明,隶属上海市的海岸线受泥沙淤积、港口建设、沿海工业建筑和土地开发等的影响较大;而隶属浙江省的海岸线受自然条件、近海水产养殖和滩涂围垦等的影响较大。  相似文献   

12.
地表蒸散发是整个生物圈、大气圈和水圈中水分循环和能量传输的重要控制因素。遥感技术的应用使得区域尺度的蒸散发估算成为可能,并在过去的几十年中快速发展。研究对遥感蒸散发估算进行了总结与归纳,在此基础上展望了今后的发展方向,明确指出了遥感蒸散发未来研究的突破点及发展方向。提出未来应加强蒸散发尺度效应、夜间蒸散发、不同蒸散发产品的统一真实性检验、国产卫星数据的使用、更高时空分辨率产品的研发以及机器学习在遥感蒸散发产品中的应用。  相似文献   

13.
结合纹理特征的SVM样本分层土地覆盖分类   总被引:1,自引:0,他引:1  
支持向量机(SVM)分类在精度、泛化性、高维数据处理等方面都具有较强的优势,在遥感影像分类中也得到了广泛应用。由于遥感影像“同物异谱”和“异物同谱”现象的影响,结合纹理特征提高SVM分类精度已成为遥感应用研究的热点。但不同尺度的纹理特征突出的信息不一,在同一尺度上难以区分的地物在多尺度空间则更容易区分,因此,采用多尺度纹理特征进行SVM分类,并从分类样本和纹理特征的选取两个方面探讨SVM土地覆盖分类的方法。首先,以ALOS影像为例,通过灰度共生矩阵提取不同尺度、不同方向的几种纹理特征;然后在光谱分类结果基础上,借助地类特征曲线,选取有效的多尺度纹理特征,最后进行样本分层分类。样本分层分类是选取首层样本进行分类,再从“漏分和错分”地块中选取新样本加入到首层样本中,得到第二层样本并对整个影像进行分类;用同样的方法选出第三层样本或更高层样本进行分类,直到结果满意为止。结果表明:该方法比仅用光谱特征的SVM分类总精度提高了8.11%,Kappa系数增加了0.11。其中,纹理特征的引入使分类总精度提高了4.13%,且对纹理特征较明显的地类更有效;采用样本分层后的分类总精度进一步提高了3.98%,且各单一地类的精度也都有不同程度的提高。借助地类特征曲线选择合适的纹理特征具有一定的可行性,并且采用样本分层的方法能够提高SVM分类的精度。  相似文献   

14.
为了改善遥感影像的分类精度,介绍了遥感影像综合理解模型,并提出了一种新的遥感影像理解模型。利用它支持图像分类,在分类过程中,相关的地理数据得到使用,且用规则表示成像和知识。经验证,该方法与传统方法相比,有效改善了分类精度,是一种好的分类方法。  相似文献   

15.
针对基于多模式遥感手段的大区域森林地上生物量(AGB)定量反演效率低的问题,充分集成主、被动遥感对森林AGB多维观测特征,提高区域定量反演结果;针对两期反演结果分析,揭示区域森林AGB空间变化格局,为科学评估区域生态环境保护(如天然林保护)、提升国家生态环境遥感连续动态监测与预警能力提供支撑。以内蒙古大兴安岭林区为研究区,以2009年为主的光学LandsatTM5(TM)与ALOS-1 PALSAR,以及2014年为主的高分一号(GF-1)与ALOS-2 PALSAR两期主、被动遥感数据提取特征因子,利用快速迭代特征选择的k-NN方法(k-Nearest Neighbor with Fast Iterative Features Selection,KNN-FIFS),实现主、被动遥感特征组合快速优化及最优估测模型构建;基于第七次、第八次森林资源连续清查样地数据,对两期研究区森林(乔木)AGB进行定量反演与留一法(LOO)验证;根据两期反演结果叠加对比,在样地和区域尺度上定量分析研究区2009~2014年间森林AGB变化。在样地尺度上,基于森林资源清查样地结果与LOO法验证结果表明,2009年的AGB反演结果R2=0.56,RMSE=25.95 t/hm2;2014年R2=0.64;RMSE=24.55 t/hm2。2009年反演均值较样地计算结果均值偏高(预测:81.59 t/hm2,实测:78.64 t/hm2);而2014年反演均值较样地计算结果偏低(预测:79.63 t/hm2;实测:82.48 t/hm2)。从区域尺度来看,2009年平均森林AGB为88.33 t/hm2;2014年的为94.61 t/hm2;平均AGB增长量为6.28 t/hm2;与前期研究利用扩展生物量因子法计算的结果接近(2008年和2013年分别为87.14 t/hm2、92.20 t/hm2)。采用基于快速迭代的KNN-FIFS方法,可大幅度提升高维度多模式遥感特征优选效率;充分融合主、被动遥感的多维观测特征,提高森林AGB反演精度及饱和点。在像素尺度上(30 m)利用LOO法对KNN-FIFS反演结果进行了验证,具有更强鲁棒性,避免了由于训练、检验样本抽选造成的随机误差。2009~2014年期间,内蒙古大兴安岭林区植被覆盖度整体呈现了明显的增长趋势;森林AGB也相应增加。自天然林保护工程实施以来,尽管森林火灾造成了局部较为严重的森林退化(覆盖度、AGB),但整体森林资源状况得到有效改善。  相似文献   

16.
基于多时序特征和卷积神经网络的农作物分类   总被引:1,自引:0,他引:1  
近年来,以卷积神经网络为主的深度学习模型在各种遥感应用中都显示出巨大的潜力。以加州帝国郡为研究区,以Landsat 8 OLI年内时序遥感影像计算时序植被指数NDVI、EVI、RVI以及TVI,组合后输入到构建的一维卷积神经网络 模型,以实现作物的高精度精细分类。为了验证卷积模型的优越性,另搭建了基于递归神经网络及其变体的深度学习模型。结果表明:①引入其他时序特征后,能够有效地提高卷积神经网络的分类精度。NDVI+EVI+TVI+RVI组合特征总体精度和Kappa系数最高,分别是89.667 4%和0.856 0,对比NDVI时序特征总体精度和Kappa系数提高了近4%和0.6。②在与其他深度学习模型的对比中,一维卷积神经网络分类精度最高,能够从时序数据中较为准确捕捉作物时序特征信息,尽管递归神经网络被广泛应用于序列数据的研究,但分类结果要略差于卷积神经网络。实验表明在NDVI的基础上引入其他植被指数辅助,能够有效地提高分类精度。基于一维卷积神经网络的深度学习框架为长时间序列分类任务提供了一种有效且高效的方法。  相似文献   

17.
针对基于多模式遥感手段的大区域森林地上生物量(AGB)定量反演效率低的问题,充分集成主、被动遥感对森林AGB多维观测特征,提高区域定量反演结果;针对两期反演结果分析,揭示区域森林AGB空间变化格局,为科学评估区域生态环境保护(如天然林保护)、提升国家生态环境遥感连续动态监测与预警能力提供支撑。以内蒙古大兴安岭林区为研究区,以2009年为主的光学LandsatTM5(TM)与ALOS-1 PALSAR,以及2014年为主的高分一号(GF-1)与ALOS-2 PALSAR两期主、被动遥感数据提取特征因子,利用快速迭代特征选择的k-NN方法(k-Nearest Neighbor with Fast Iterative Features Selection,KNN-FIFS),实现主、被动遥感特征组合快速优化及最优估测模型构建;基于第七次、第八次森林资源连续清查样地数据,对两期研究区森林(乔木)AGB进行定量反演与留一法(LOO)验证;根据两期反演结果叠加对比,在样地和区域尺度上定量分析研究区2009~2014年间森林AGB变化。在样地尺度上,基于森林资源清查样地结果与LOO法验证结果表明,2009年的AGB反演结果R2=0.56,RMSE=25.95 t/hm2;2014年R2=0.64;RMSE=24.55 t/hm2。2009年反演均值较样地计算结果均值偏高(预测:81.59 t/hm2,实测:78.64 t/hm2);而2014年反演均值较样地计算结果偏低(预测:79.63 t/hm2;实测:82.48 t/hm2)。从区域尺度来看,2009年平均森林AGB为88.33 t/hm2;2014年的为94.61 t/hm2;平均AGB增长量为6.28 t/hm2;与前期研究利用扩展生物量因子法计算的结果接近(2008年和2013年分别为87.14 t/hm2、92.20 t/hm2)。采用基于快速迭代的KNN-FIFS方法,可大幅度提升高维度多模式遥感特征优选效率;充分融合主、被动遥感的多维观测特征,提高森林AGB反演精度及饱和点。在像素尺度上(30 m)利用LOO法对KNN-FIFS反演结果进行了验证,具有更强鲁棒性,避免了由于训练、检验样本抽选造成的随机误差。2009~2014年期间,内蒙古大兴安岭林区植被覆盖度整体呈现了明显的增长趋势;森林AGB也相应增加。自天然林保护工程实施以来,尽管森林火灾造成了局部较为严重的森林退化(覆盖度、AGB),但整体森林资源状况得到有效改善。  相似文献   

18.
科学准确地估算农作物生物量是生物质能源开发利用战略的必要前提.随着遥感技术的不断发展,可获取遥感数据的时间、空间、光谱分辨率都在不断提高,为长时间跨度和大空间尺度的农作物生物量估算提供了有力支撑.对目前农作物生物量估算方法进行了分析总结,重点阐述了基于遥感信息的农作物生物量估算方法,并根据基于模型的不同将其分为4类(基于植被指数、净初级生产力、作物生长模型、作物表面模型的农作物生物量估算方法),对每一类方法的原理进行了详细论述,并就其在国内外典型的应用情况进行了分析,在此基础上总结了各种估算方法的优势及存在问题,展望了该领域未来主要的发展方向.  相似文献   

19.
赵志刚  陈学 《计算机工程》2000,26(10):136-137
基于数据层的统计数据融合方法,以提高遥感图象的分类性能为目的,实现了一种新的可调参数的图象分类方法。用这种方法对TM图象和SAR图象进行了一系列的实验,并对实验的结果进行了分析,从而得出关于数据层统计信息融合方法的有益的结论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号