共查询到20条相似文献,搜索用时 9 毫秒
1.
滚动轴承出现损伤时,采集的振动信号呈非平稳性,采用一般的时域和频域分析方法不能准确提取出振动信号的故障特征。根据小波包多分辨、精细化的分解特性,提出一种基于小波包能量谱与主成分分析(PCA)方法的滚动轴承故障诊断算法。将振动信号进行小波包分解,得到重点频率段信息的能量谱,提取能量谱作为特征向量;利用PCA方法对特征向量降维并减小噪声信号的干扰,获得增强的故障特征;利用层次聚类方法和改进的模糊c均值聚类算法对不同类型的滚动轴承故障进行识别,两种聚类方法都准确地识别出了不同的故障类型。实例验证结果表明,所提方法能够有效地提取振动信号中的有用故障特征,实现轴承故障类型的精确诊断。 相似文献
2.
在轴承故障诊断中,故障信号的提取是一个关键问题。实际测得的轴承振动信号一般是非平稳和非高斯分布的信号,信噪比很低,微弱的故障信息往往完全淹没在噪声中,信号特征的提取非常困难。信号的高阶累积量对加性高斯噪声和对称非高斯噪声不敏感,应用在轴承的故障诊断中,可以有效地分离信号与噪声,提高信噪比,增强故障信息。对轴承在不同状态下的振动信号进行对比分析,提取了不同状态下轴承振动信号的功率谱与高阶累量谱(双谱),建立了用于故障诊断的双谱特征向量,并利用BP神经网络进行了故障诊断。分析结果表明,从高阶累积量提取的特征与功率谱相比,对故障特征比较敏感,容易实现智能诊断中的数字特征提取,可有效地区分轴承的故障。 相似文献
3.
4.
针对传统故障诊断方法诊断过程复杂、效果不佳的问题,提出一种基于卷积神经网络的滚动轴承故障诊
断方法。首先选取不同故障的振动信号进行归一化处理,然后把 1 维的振动信号转化成 2 维的灰度图像,利用每个
元素与其相邻元素之间的关系,并且采用重叠采样的方法加强数据集。在卷积神经网方面利用 tensorflow 搭建网络
框架,采用 4 种不同的卷积神经网络结构对样本进行训练。为避免实验的随机性,对每种方案进行多次训练,采其
结果的均值。根据测试集的准确率选取最好的适合轴承故障诊断的模型,同时对网络的结构参数进行优化改进,提
高模型的识别率和运行效率。实验结果表明,该方法可以准确地将滚动轴承的故障进行识别和分类。 相似文献
5.
针对滚动轴承故障在线监测问题,将LabVIEW与Matlab 2种编程方式相结合进行故障诊断。论述滚动轴承故障信号特征,介绍峭度分析法和共振解调法分析方法,并采用LabVIEW和Matlab联合编程进行算法实现。借助典型轴承故障实验数据对分析方法进行验证,结果表明:该系统能有效分析并识别轴承的特征故障,可用于轴承故障监测。 相似文献
6.
柴油机高压共轨系统运行时轨压波动信号波动较大且非线性特征较为明显,使其故障诊断较为困难。针对高压共轨系统轨压信号状态参数难以提取与识别的问题,提出一种基于集合经验模态分解(EEMD)—支持向量机(SVM)的故障诊断方法。通过EEMD将轨压信号分解为一系列固有模态函数,利用过零率曲线确定的特征提取准则提取本征模态函数中的特征值。将提取的特征值输入SVM中进行故障类型的诊断。通过AME Sim软件仿真实验获得轨压信号,对比7种不 同的特征值选择方法,最终选取能量特征值构建特征值向量并进行识别和诊断结果分析,以验证该方法的正确性与准确性。结果表明:所提出的基于EEMD—SVM的高压共轨系统故障诊断方法能够对6种不同的运行状态进行状态识别,平均故障诊断正确率可达96.11%。 相似文献
7.
针对现有基于深度卷积神经网络的故障诊断方法只考虑对信息局部特征的提取、忽视全局信息的不足,将可以把握全局信息的注意力机制融入卷积层,使得注意力机制参数和卷积层参数参与网络的训练,提出一种注意力增强卷积神经网络的机械故障诊断方法。通过经验模态分解、变分模态分解和小波包分解的方法提取滚动轴承振动信号的高维特征模量;将特征模量组成多通道样本输入到注意力增强卷积神经网络中进行训练,利用网络对特征模量自适应地融合和选择,从而挖掘特征模量的隐式特征;使用Softmax分类器进行分类识别;通过训练好的网络对高转速下的滚动轴承进行故障诊断;利用不同信噪比的信号对所提方法进行测试,以验证网络的泛化能力和故障诊断效果。实验结果表明:该方法能准确、有效地对航空发动机滚动轴承不同故障的损伤程度进行分类识别。 相似文献
8.
小波包变换是小波变换的推广,对频率的划分是等间距的,并且划分更为精细,精度更高.为此,将其引入引信信号处理,利用小波包频带的阶梯滤波特性构造二维的时频分布,比较不同脱靶参数的典型弹目交会测试曲线的小波包二维时频分布图,得到弹目交会位置信息的关系及二维时频特征.对地作用的近炸引信的弹目交会信号处理中,利用小波包分析构造二维的时频分布,可以提高目标探测的准确性,利用脱靶方位信息实现弹药的有效打击. 相似文献
9.
10.
11.
A fault diagnosis method of bearing based on integration of non-linear geometric invariables was presented for the non-linearity exiting in bearing system but ignored in traditional fault diagnosis.The meanings of non-linear geometric invariables,such as fractal dimension,Lyapunov exponent,Kolmogorov entropy,correlation distance entropy and their calculation method were analyzed.Grey theory is applied to integrate these parameters and the correlation values as fault characteristic value was input into the support vector machines for diagnosis.The experimental results show that this method can distinguish the bearing fault effectively,it provides a new approach for the fault diagnosis of rotating machinery. 相似文献
12.
13.
为兼顾模拟电路多故障诊断的实用性和诊断精度,基于仿真诊断模型的测试性应用框架,结合深度学习与核方法的优势,提出一种多层单纯形优化核超限学习机(ML-SOKELM)方法。将有效初选后的数据集输入多层核超限学习机逐层提取故障特征并进行诊断;训练过程中,将各层核参数向量视为待优化变量,运用单纯形法对其进行联合优化。实验结果表明:与常见的深度学习方法相比,ML-SOKELM方法对主观经验依赖性更低,在训练时间大大缩短的同时,还能获得与之相当的准确率;与流行的核方法相比,ML-SOKELM方法在不同模糊度阈值下均能获得较高的诊断准确率。 相似文献
14.
针对微小航天器集群的故障诊断问题,提出一种故障诊断(fault diagnosis,FD)新方法。依据小波神经网络(wavelet neural network,WNN)理论,结合航天器集群的领队航天器故障检测与系统重构问题,构建一种故障诊断框架,采用小波神经网络与神经网络相结合,得出航天器姿态故障诊断策略及卫星姿态故障重构技术,给出了领队航天器故障重构方案,并进行了仿真实验与验证。仿真结果表明,该故障诊断方法是有效性的、故障重构是可行性的。 相似文献
15.
基于系统辨识的小波分析在导弹一级变放故障诊断中的应用研究 总被引:2,自引:0,他引:2
提出了一种基于系统辨识思想的故障诊断方法,详细介绍了利用小波分析方法将某导弹一级变换放大器故障精确定位的算法,给出了故障诊断的硬件电路原理图,并且通过仿真实验证实该方法的可靠性和有效性。 相似文献
16.
17.
文中主要用小波分析对齿轮箱进行了故障诊断。对测取到的齿轮箱振动信号运用小波消噪处理后.采用较新的信号分析工具——小波分析来进行信号分析与处理.从而来判别出故障。结果表明.小波分析为判断、预防同类故障提供了一种有效的分析手段。 相似文献
18.
19.
基于小波变换的时频域局部化特征及神经网络的非线性映射特征,以滚动轴承为例,将小波变换和神经网络的优点结合起来.运用小波变换提取滚动轴承振动信号各频率成分的能量作为故障特征参数,将其作为神经网络的输入进行训练和故障识别,利用BP网络实现了对滚动轴承的故障诊断,取得了较好的效果. 相似文献