首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
黄熠  王娟 《计算机科学》2017,44(Z6):446-450
中文文本的情感倾向分析是网络舆情信息挖掘和分析的关键技术之一。提出了一种粒子群-高斯过程算法(PSO-GP)的中文文本情感倾向分类方法,采用粒子群优化算法(Particle Swarm optimization,PSO)进行高斯过程(Gaussian Process)超参数的最优搜索,解决了传统高斯过程中共轭梯度法迭代次数难确定、对初值依赖性强和易陷入局部极小值等问题。首先采用多线程网络爬虫技术采集文本数据组成语料库,构建特定领域情感词典,然后通过情感词匹配选择最有效的特征,降低数据维度,并利用TF-IDF算法计算特征词的权重以生成特征向量。最终,将测试样本输入PSO-GP分类模型。实验结果表明,与传统GP方法相比,提出的改进高斯过程分类模型的分类准确率提高了近15%。  相似文献   

2.
在传统的线性递减惯性权重(LDW)粒子群算法的基础上,提出一种新的引入粒子密度因子的粒子群算法。该算法根据粒子平均适应度值和社会最优适应度值,采用径向基函数形式来度量粒子群在最优值附近的聚集程度。在进化过程中,当密度因子大于一定值时,在LDW惯性权重因子中加入扰动项,使粒子群重新散开,从而跳出局部极值,避免算法出现早熟现象。基于Benchmark函数库的仿真实验表明,该算法一定程度上避免了算法过早收敛,尤其是在高维和多极值情况下性能明显优于传统PSO算法。  相似文献   

3.
粒子群优化算法的分析与改进   总被引:49,自引:2,他引:49  
分析了惯性权值对粒子群优化(PSO)算法优化性能的影响,进而提出选择惯性权值的新策略.在随机选取惯性权值的同时,自适应地调整随机惯性权值的数学期望,有效地调整算法的全局与局部搜索能力.测试表明基于随机惯性权(RIW)策略的PSO算法,其全局搜优的速率与精度有明显提高.  相似文献   

4.
一种改进的粒子群优化算法   总被引:1,自引:1,他引:0  
粒子群优化算法(PSO)是一种生物进化技术。依据粒子间的相互影响发现搜索空间中的最优解。通过分析基本PSO算法的进化方程,研究了一种具有更好收敛速度和全局收敛性的改进PSO算法。5个典型测试函数的仿真实验表明该改进算法是行之有效的。  相似文献   

5.
王佳  徐蔚鸿 《计算机应用》2011,31(2):501-503
支持向量机(SVM)可以很好地用来解决分类问题,参数优化尤其重要。混合核函数的引入,使得SVM又多了一个可调参数。针对该参数用人工或经验的方法获取具有局限性,采用动量粒子群(MPSO)对SVM基本参数、混合可调核参数进行综合寻优,来寻找最佳参数组合。通过UCI数据仿真,对比结果表明:所提优化方法能够快速有效地提取最佳参数组合,所得SVM性能明显提高,分类效果更好。  相似文献   

6.
一种改进粒子群优化算法   总被引:3,自引:1,他引:3  
为了提高粒子群优化算法的性能,提出了一种惯性权值调整的改进粒子群优化算法,该算法的惯性权值满足不同粒子对全局和局部搜索能力的不同需求,每次迭代后根据适应度值对惯性权值做相应的调整.对4个典型的测试函数进行仿真表明,该算法比标准粒子群优化算法有更好的收敛性和更快的收敛速度,改善了优化性能.  相似文献   

7.
朱玉平 《微机发展》2008,(11):106-108
为了提高粒子群优化算法的性能,提出了一种惯性权值调整的改进粒子群优化算法,该算法的惯性权值满足不同。粒子对全局和局部搜索能力的不同需求,每次迭代后根据适应度值对惯性权值做相应的调整。对4个典型的测试函数进行仿真表明,该算法比标准粒子群优化算法有更好的收敛性和更快的收敛速度,改善了优化性能。  相似文献   

8.
在基于粒子群优化的节点定位过程中,惯性权重的设置对算法收敛速度和定位精度有着重要影响。本文从两个方面对其进行改进:利用节点间的连通信息对未知节点可能存在的区域进行估计,缩小粒子搜索范围;根据未知节点存在区域,对粒子群优化算法的惯性权重设置进行改进。仿真结果表明,改进算法的定位精度和稳定性有明显的提高,是一种可行的无线传感器网络节点定位的解决方案。  相似文献   

9.
由于支持向量机的主要参数的选择能够在很大程度上影响分类性能和效果,并且目前参数优化缺乏理论指导,提出一种粒子群优化算法以优化支持向量机参数的方法.该方法通过引入非线性递减惯性权值和异步线性变化的学习因子策略来改善标准粒子群算法的后期收敛速度慢、易陷入局部最优的缺陷.实验结果表明,相对于标准粒子群算法,本方法在参数优化方面具有良好的鲁棒性、快速收敛和全局搜索能力,具有更高的分类精确度和效率.  相似文献   

10.
基于粒子群优化神经网络的语音情感识别   总被引:1,自引:0,他引:1  
提出了一种基于粒子群优化算法的人工神经网络,并把它应用到语音情感识别系统中。依据情感的维度空间模型,分别提取了韵律特征与音质特征,研究了谐波噪声比特征随情感类别的变化。利用粒子群优化算法(PSO)训练随机产生的初始数据,优化神经网络的连接权值和阈值,快速地实现网络的收敛。在实验中比较了BP神经网络、RBF神经网络与PSO神经网络分别用于语音情感识别的识别率,PSO神经网络的平均识别率高于BP神经网络6.7%,高于RBF神经网络5.4%。结果显示,粒子群优化神经网络用于语音情感识别提高了识别性能。  相似文献   

11.
为解决粒子群算法前期搜索“盲目”,后期搜索速度慢且易陷入局部极值的问题,对算法中粒子更新方式和惯性权重进行了改进,提出了一种基于引导策略的自适应粒子群算法。该算法在种群中引入4种粒子,即主体粒子、双中心粒子、协同粒子和混沌粒子对粒子位置更新进行引导,克服算法的随机性,从而提高搜索效率;为进一步克服粒子群优化算法进化后期易陷入早熟收敛的缺点,引入聚焦距离变化率的概念,通过聚焦距离变化率的大小动态调整惯性权重,以提高算法的收敛速度和精度,两者结合极大地提高了搜索到全局最优解的有效性。对4个标准测试函数进行仿真,实验结果表明IPSO算法在收敛速度、收敛精度以及成功率上都明显优于LDWPSO和WPSO算法。  相似文献   

12.
一种优化高维复杂函数的PSO算法   总被引:11,自引:0,他引:11  
对于高维复杂函数,一般粒子群优化算法收敛速度慢,易早熟收敛。本文重构一个适合高维复杂函数惯性权重函数,使粒子群算法寻优过程中的全局收搜能力和局部收搜能力良好平衡,以达到快速收敛,高效避免早熟问题,获得最优解。对典型高维复杂函数的仿真表明:算法在求解质量和求解速度两方面都得到了好的结果。  相似文献   

13.
微粒群算法中惯性权重的调整策略   总被引:8,自引:0,他引:8  
胡建秀  曾建潮 《计算机工程》2007,33(11):193-195
惯性权重是微粒群算法中的关键参数,可以平衡算法全局搜索能力和局部搜索能力的关系,提高算法的收敛性能。该文分析了惯性权重对微粒群算法收敛性能的影响,为了进一步提高算法的全局最优性,提出了几种对惯性权重的调整策略。通过对4个测试函数的仿真实验,验证了这些策略的可行性,表明这些策略能够简便高效地提高算法的全局收敛性和收敛速度。  相似文献   

14.
基于试探的变步长自适应粒子群算法   总被引:1,自引:0,他引:1  
针对粒子群算法容易陷入局部最优的缺陷,在分析惯性因子在算法中的作用机理的基础上,设计了一个根据种群多样性和进化代数自适应调节的惯性因子,并运用试探法,通过变换搜索步长,提高算法的局部搜索能力.最后,给出了3个典型函数的模拟例子,通过与APSO的对比结果显示,改进后的算法其性能得到极大提高.  相似文献   

15.
基于分层多子群的混沌粒子群优化算法   总被引:2,自引:0,他引:2  
王维博  冯全源 《控制与决策》2010,25(11):1663-1668
在分层多子群结构模型的基础上,提出一种混沌粒子群优化算法(HCPSO).该算法对非线性递减的惯性权重进行混沌变异,并采用了混沌搜索方法.在更新全局历史最优位置每一维分量时,选取不同的若干个体作为学习对象,并计算它们的平均位置.混沌搜索区域半径可根据粒子个体最优位置与上述平均位置间的距离自适应地调整.通过对几种典型函数的测试结果表明,该算法具有较好的全局搜索和局部搜索能力,可有效避免早熟收敛问题.  相似文献   

16.
提出了一种改进混沌粒子群算法(MCPSO)与BP算法的混合算法(MCPSO—BP),该算法综合了改进粒子群算法全局寻优的高效性,混沌算法局部搜索的遍历性和BP算法快速的局部搜索能力。仿真结果表明,MCPSO—BP算法网络结构简单,收敛速度快,并具有良好的逼近能力和泛化能力。  相似文献   

17.
粒子群算法(Particle Swarm Optimization,PSO)的性能极大地依赖于其惯性权重参数的选择策略。当在一次迭代中更新粒子速度时,PSO忽略了粒子间的差异,在所有粒子上应用了相同的惯性权重。针对这一问题,提出一种自适应惯性权重的粒子群算法PSO-AIWA,有效合理地均衡PSO的全局搜索和局部搜索能力。根据当前粒子与全局最优粒子间的差异,算法可以通过基于粒子间距的隶属度函数动态调整粒子的惯性权重,使得每次迭代中,粒子可以根据当前状态在每个维度上的搜索空间内选择合适的惯性权重进行状态更新。在6种基准函数下进行了算法的性能测试,结果表明,与随机式惯性权重PSO算法与线性递减惯性权重PSO-LDIW算法相比,该算法可以获得更好的粒子分布和收敛性。  相似文献   

18.
具有随机惯性权重的PSO算法   总被引:11,自引:1,他引:11  
微粒群算法(PSO算法)是模拟鸟类、鱼群等的群体智能行为的一种优化算法,当前,在相关领域内,倍受国内外学者关注。该文在分析基本PSO算法的速度进化方程的基础上,提出一种能更好描述微粒进化过程的速度方程,由其引出一种具有随机惯性权重的PSO算法;通过五个典型测试函数的仿真实验,验证了其可行性,同时也表明具有随机惯性权重的PSO算法较具有线性递减惯性权重的PSO算法在收敛速度和全局收敛性方面有明显提高。  相似文献   

19.
一种动态改变惯性权重的自适应粒子群算法   总被引:11,自引:1,他引:11  
针对标准粒子群算法在进化过程中种群多样性降低而早熟的问题,提出一种动态改变惯性权重的自适应粒子群算法.采用种群中平均粒子相似程度作为种群多样性的测度,并用于平衡算法的全局探索和局部开发.基于对惯性权重随种群多样性测度变化的动态分析,建立了惯性权重随种群多样性测度的变化关系,并将其引入该算法中.最后对6个经典测试函数进行仿真,结果表明该算法在平均最优值和成功率上都有所提高,特别是对多峰函数效果更明显.  相似文献   

20.
分析了粒子群算法的收敛性,指出早熟是由于粒子速度降低而失去继续搜索可行解的能力.进而提出一种基于种群速度动态改变惯性权重的粒子群算法,该算法以种群粒子平均速度为信息动态改变惯性权重,避免了粒子速度过早接近0.通过5个标准测试函数的仿真实验并与其他算法相比,结果表明该算法在进化中期能很好地保持种群多样性,有效地改善算法的平均最优值和成功率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号