共查询到20条相似文献,搜索用时 62 毫秒
1.
中文文本的情感倾向分析是网络舆情信息挖掘和分析的关键技术之一。提出了一种粒子群-高斯过程算法(PSO-GP)的中文文本情感倾向分类方法,采用粒子群优化算法(Particle Swarm optimization,PSO)进行高斯过程(Gaussian Process)超参数的最优搜索,解决了传统高斯过程中共轭梯度法迭代次数难确定、对初值依赖性强和易陷入局部极小值等问题。首先采用多线程网络爬虫技术采集文本数据组成语料库,构建特定领域情感词典,然后通过情感词匹配选择最有效的特征,降低数据维度,并利用TF-IDF算法计算特征词的权重以生成特征向量。最终,将测试样本输入PSO-GP分类模型。实验结果表明,与传统GP方法相比,提出的改进高斯过程分类模型的分类准确率提高了近15%。 相似文献
2.
3.
4.
粒子群优化算法(PSO)是一种生物进化技术。依据粒子间的相互影响发现搜索空间中的最优解。通过分析基本PSO算法的进化方程,研究了一种具有更好收敛速度和全局收敛性的改进PSO算法。5个典型测试函数的仿真实验表明该改进算法是行之有效的。 相似文献
5.
支持向量机(SVM)可以很好地用来解决分类问题,参数优化尤其重要。混合核函数的引入,使得SVM又多了一个可调参数。针对该参数用人工或经验的方法获取具有局限性,采用动量粒子群(MPSO)对SVM基本参数、混合可调核参数进行综合寻优,来寻找最佳参数组合。通过UCI数据仿真,对比结果表明:所提优化方法能够快速有效地提取最佳参数组合,所得SVM性能明显提高,分类效果更好。 相似文献
6.
为了提高粒子群优化算法的性能,提出了一种惯性权值调整的改进粒子群优化算法,该算法的惯性权值满足不同。粒子对全局和局部搜索能力的不同需求,每次迭代后根据适应度值对惯性权值做相应的调整。对4个典型的测试函数进行仿真表明,该算法比标准粒子群优化算法有更好的收敛性和更快的收敛速度,改善了优化性能。 相似文献
7.
8.
一种改进粒子群优化算法 总被引:3,自引:1,他引:3
朱玉平 《计算机技术与发展》2008,18(11)
为了提高粒子群优化算法的性能,提出了一种惯性权值调整的改进粒子群优化算法,该算法的惯性权值满足不同粒子对全局和局部搜索能力的不同需求,每次迭代后根据适应度值对惯性权值做相应的调整.对4个典型的测试函数进行仿真表明,该算法比标准粒子群优化算法有更好的收敛性和更快的收敛速度,改善了优化性能. 相似文献
9.
10.
11.
12.
论文提出了一种新的图象分类算法--基于微粒群的图象分类算法.将此算法和K均值聚类算法分别应用于MRI人脑图象的分类,并进行了比较.实验结果表明:基于微粒群的图象分类算法具有较好的全局收敛性,不仅能有效克服K均值算法易陷入局部极小值的缺点,而且全局收敛性能优于K均值算法. 相似文献
13.
14.
针对甲烷气体定量分析过程中,传统SVM模型预测精度低、收敛速度慢等问题,提出了一种基于改进PSO算法的SVM回归模型.该模型在传统PSO算法寻优的基础上,引入动量项的同时增加随机粒子个体极值的追随因子,使粒子不仅追随全局最优解和局部最优解,还跟随种群中任一粒子的个体极值,使得寻优算法后期收敛速度较快,不易陷入局部最小值.实验中,对0~5.05%浓度的25组标准甲烷样气进行建模分析,并与传统PSO算法寻优模型和Grid搜索法寻优模型进行对比.结果表明,采用改进PSO算法建立的SVM回归模型均方根误差小,收敛速度快. 相似文献
15.
具有随机惯性权重的PSO算法 总被引:11,自引:1,他引:11
微粒群算法(PSO算法)是模拟鸟类、鱼群等的群体智能行为的一种优化算法,当前,在相关领域内,倍受国内外学者关注。该文在分析基本PSO算法的速度进化方程的基础上,提出一种能更好描述微粒进化过程的速度方程,由其引出一种具有随机惯性权重的PSO算法;通过五个典型测试函数的仿真实验,验证了其可行性,同时也表明具有随机惯性权重的PSO算法较具有线性递减惯性权重的PSO算法在收敛速度和全局收敛性方面有明显提高。 相似文献
16.
物流配送中心的选址问题在当今经济,尤其是任电子商务发展迅速与繁荣的社会中有着举足轻重的地位。本文采用提出的改进粒子群算法对该问题的模型进行了求解,仿真结果表明改进算法对于该问题求解的有效性。 相似文献
17.
华欣 《电脑编程技巧与维护》2009,(24):16-17,21
粒子群优化算法是一种启发式全局优化技术,一种基于群智能的演化计算方法。本文给出了多种改进形式以及与其他算法的比较,并提出了未来可能的研究方向。 相似文献
18.
基于改进粒子群算法的无人机爬升轨迹优化 总被引:1,自引:0,他引:1
研究无人机控制优化爬升性能问题,由于单独提高速度或节省燃油问题,均存在互相影响。为了使无人机能够快速、省油地爬升到预定高度,综合考虑了油耗和时间这两个因素。在分析了无人机爬升段数学模型的基础上,提出将油耗和时间的综合运营成本作为优化指标,并提出了一种改进粒子群算法的无人机爬升轨迹优化方法。将无人机轨迹优化问题转化为有约束的参数优化问题,并用改进粒子群算法进行参数优化,从而得到综合指标最优的爬升轨迹。对某无人机实例进行爬升轨迹优化,仿真结果比传统方法更节省了运营成本,证明了改进方法的优越性。 相似文献
19.
文本对抗攻击能够极大地弱化深度神经网络在自然语言处理任务中的判别能力,对抗攻击方法的研究是提升深度神经网络鲁棒性的重要方法.现有的词级别文本对抗方法在搜索对抗样本时不够有效,搜索到的往往不是最理想的样本.针对这一缺陷,提出了基于改进的量子行为粒子群优化算法的文本对抗方法.通过对量子行为粒子群优化算法进行离散化的适应性改... 相似文献
20.
传统的Gmapping算法在RPPF-SLAM的基础上改进了提议分布与重采样策略,提升了算法性能。但是Gmapping在频繁地进行粒子迭代过程中会出现粒子退化现象,导致正确的粒子被丢弃或者粒子的多样性下降,直接影响到建图效果。针对上述问题提出了一种融合改进粒子群最优化算法的粒子滤波SLAM算法,采用PSO算法对采样后的粒子群进行更新,并且对不同权重大小的粒子进行粒子分层,依据分层结果优化重采样策略,保证粒子在高似然区域的占比同时也改善了粒子的多样性。在MATLAB上对改进粒子群优化算法进行仿真实验,结合搭载ROS系统的移动机器人实现真实环境的定位与建图。实验结果表明改进后的算法有着更高精度的定位与更精确的建图效果。 相似文献