首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 80 毫秒
1.
黄熠  王娟 《计算机科学》2017,44(Z6):446-450
中文文本的情感倾向分析是网络舆情信息挖掘和分析的关键技术之一。提出了一种粒子群-高斯过程算法(PSO-GP)的中文文本情感倾向分类方法,采用粒子群优化算法(Particle Swarm optimization,PSO)进行高斯过程(Gaussian Process)超参数的最优搜索,解决了传统高斯过程中共轭梯度法迭代次数难确定、对初值依赖性强和易陷入局部极小值等问题。首先采用多线程网络爬虫技术采集文本数据组成语料库,构建特定领域情感词典,然后通过情感词匹配选择最有效的特征,降低数据维度,并利用TF-IDF算法计算特征词的权重以生成特征向量。最终,将测试样本输入PSO-GP分类模型。实验结果表明,与传统GP方法相比,提出的改进高斯过程分类模型的分类准确率提高了近15%。  相似文献   

2.
在传统的线性递减惯性权重(LDW)粒子群算法的基础上,提出一种新的引入粒子密度因子的粒子群算法。该算法根据粒子平均适应度值和社会最优适应度值,采用径向基函数形式来度量粒子群在最优值附近的聚集程度。在进化过程中,当密度因子大于一定值时,在LDW惯性权重因子中加入扰动项,使粒子群重新散开,从而跳出局部极值,避免算法出现早熟现象。基于Benchmark函数库的仿真实验表明,该算法一定程度上避免了算法过早收敛,尤其是在高维和多极值情况下性能明显优于传统PSO算法。  相似文献   

3.
粒子群优化算法的分析与改进   总被引:49,自引:2,他引:49  
分析了惯性权值对粒子群优化(PSO)算法优化性能的影响,进而提出选择惯性权值的新策略.在随机选取惯性权值的同时,自适应地调整随机惯性权值的数学期望,有效地调整算法的全局与局部搜索能力.测试表明基于随机惯性权(RIW)策略的PSO算法,其全局搜优的速率与精度有明显提高.  相似文献   

4.
王佳  徐蔚鸿 《计算机应用》2011,31(2):501-503
支持向量机(SVM)可以很好地用来解决分类问题,参数优化尤其重要。混合核函数的引入,使得SVM又多了一个可调参数。针对该参数用人工或经验的方法获取具有局限性,采用动量粒子群(MPSO)对SVM基本参数、混合可调核参数进行综合寻优,来寻找最佳参数组合。通过UCI数据仿真,对比结果表明:所提优化方法能够快速有效地提取最佳参数组合,所得SVM性能明显提高,分类效果更好。  相似文献   

5.
粒子群优化算法(PSO)是一种生物进化技术。依据粒子间的相互影响发现搜索空间中的最优解。通过分析基本PSO算法的进化方程,研究了一种具有更好收敛速度和全局收敛性的改进PSO算法。5个典型测试函数的仿真实验表明该改进算法是行之有效的。  相似文献   

6.
一种改进粒子群优化算法   总被引:3,自引:1,他引:3  
为了提高粒子群优化算法的性能,提出了一种惯性权值调整的改进粒子群优化算法,该算法的惯性权值满足不同粒子对全局和局部搜索能力的不同需求,每次迭代后根据适应度值对惯性权值做相应的调整.对4个典型的测试函数进行仿真表明,该算法比标准粒子群优化算法有更好的收敛性和更快的收敛速度,改善了优化性能.  相似文献   

7.
在基于粒子群优化的节点定位过程中,惯性权重的设置对算法收敛速度和定位精度有着重要影响。本文从两个方面对其进行改进:利用节点间的连通信息对未知节点可能存在的区域进行估计,缩小粒子搜索范围;根据未知节点存在区域,对粒子群优化算法的惯性权重设置进行改进。仿真结果表明,改进算法的定位精度和稳定性有明显的提高,是一种可行的无线传感器网络节点定位的解决方案。  相似文献   

8.
朱玉平 《微机发展》2008,(11):106-108
为了提高粒子群优化算法的性能,提出了一种惯性权值调整的改进粒子群优化算法,该算法的惯性权值满足不同。粒子对全局和局部搜索能力的不同需求,每次迭代后根据适应度值对惯性权值做相应的调整。对4个典型的测试函数进行仿真表明,该算法比标准粒子群优化算法有更好的收敛性和更快的收敛速度,改善了优化性能。  相似文献   

9.
由于支持向量机的主要参数的选择能够在很大程度上影响分类性能和效果,并且目前参数优化缺乏理论指导,提出一种粒子群优化算法以优化支持向量机参数的方法.该方法通过引入非线性递减惯性权值和异步线性变化的学习因子策略来改善标准粒子群算法的后期收敛速度慢、易陷入局部最优的缺陷.实验结果表明,相对于标准粒子群算法,本方法在参数优化方面具有良好的鲁棒性、快速收敛和全局搜索能力,具有更高的分类精确度和效率.  相似文献   

10.
文章针对图像分类任务中特征选择的问题,提出一种基于粒子群算法的优化方法。首先,文章深入研究粒子群算法的基本原理;其次,引入粒子群优化算法进行特征选择;最后,使用支持向量机进行图像分类。实验结果表明,所提出的粒子群优化方法显著提高了图像分类的准确性,且该方法的一致性和稳健性较好。  相似文献   

11.
微粒群算法中惯性权重的调整策略   总被引:8,自引:0,他引:8       下载免费PDF全文
胡建秀  曾建潮 《计算机工程》2007,33(11):193-195
惯性权重是微粒群算法中的关键参数,可以平衡算法全局搜索能力和局部搜索能力的关系,提高算法的收敛性能。该文分析了惯性权重对微粒群算法收敛性能的影响,为了进一步提高算法的全局最优性,提出了几种对惯性权重的调整策略。通过对4个测试函数的仿真实验,验证了这些策略的可行性,表明这些策略能够简便高效地提高算法的全局收敛性和收敛速度。  相似文献   

12.
周鲜成 《微计算机信息》2007,23(18):282-283,274
论文提出了一种新的图象分类算法--基于微粒群的图象分类算法.将此算法和K均值聚类算法分别应用于MRI人脑图象的分类,并进行了比较.实验结果表明:基于微粒群的图象分类算法具有较好的全局收敛性,不仅能有效克服K均值算法易陷入局部极小值的缺点,而且全局收敛性能优于K均值算法.  相似文献   

13.
王勇  张伟  陈军  韦鹏程 《计算机科学》2009,36(8):258-259
提出一种新的粒子群优化(Particle Swarm Optimization,PSO)算法,将微调(Fine-Tuning)机制导入PSO算法中,可提高算法在最优区域局部搜寻的能力,改善PSO在搜寻末期,粒子相似度过高的缺陷.最后用2种不同复杂程度的函数为例,比较本算法与PSO算法的最优化能力.结果显示,本算法在搜寻成功率及平均收敛时间、平均收敛代数的性能表现上皆优于PSO算法.  相似文献   

14.
针对粒子群优化算法(PSO)容易陷入局部极值、进化后期收敛速度慢和精度低等缺点,提出了一种改进的简化粒子群优化算法(YSPSO)。该算法采用黄金分割法平衡惯性与经验之间的相互影响;同时,为避免错过全局最优值,增加反向随机惯性权重,使粒子在一定程度上具有反向搜索的能力。最后,对几个经典基准测试函数进行实验,结果表明,YSPSO算法在提高算法收敛速度和精度的同时,降低了陷入局部极值的可能性,提高了PSO算法的实用性。  相似文献   

15.
基于粒子群优化算法的聚类分析   总被引:18,自引:0,他引:18  
基于求解实优化问题时粒子群算法优于遗传算法这一事实,在基于遗传算法的K-均值聚类算法的基础上,给出了一种摹于粒子群优化算法的聚类方法。实验结果显示,基于粒子群优化算法的聚类方法在收敛速度方面明显优于基于遗传算法的聚类方法。  相似文献   

16.
针对甲烷气体定量分析过程中,传统SVM模型预测精度低、收敛速度慢等问题,提出了一种基于改进PSO算法的SVM回归模型.该模型在传统PSO算法寻优的基础上,引入动量项的同时增加随机粒子个体极值的追随因子,使粒子不仅追随全局最优解和局部最优解,还跟随种群中任一粒子的个体极值,使得寻优算法后期收敛速度较快,不易陷入局部最小值.实验中,对0~5.05%浓度的25组标准甲烷样气进行建模分析,并与传统PSO算法寻优模型和Grid搜索法寻优模型进行对比.结果表明,采用改进PSO算法建立的SVM回归模型均方根误差小,收敛速度快.  相似文献   

17.
针对粒子群算法求解精度低和后期收敛速度慢等问题,提出了一种基于S型函数的自适应粒子群优化算法SAPSO (S-shaped function based Adaptive Particle Swarm Optimization)。该算法利用倒S型函数的特点,实现了对惯性权重的非线性调整,从而更好地平衡算法的全局搜索能力和局部搜索能力;同时,在算法的位置更新公式中引入S型函数,并利用个体粒子自身的适应度值与群体平均适应度值的比值自适应地调整搜索步长,从而提高算法的搜索效率。在若干经典测试函数上的仿真实验结果表明,与已有的几种改进粒子群算法相比,SAPSO在收敛速度和求解精度方面均有较大优势。  相似文献   

18.
具有随机惯性权重的PSO算法   总被引:11,自引:1,他引:11  
微粒群算法(PSO算法)是模拟鸟类、鱼群等的群体智能行为的一种优化算法,当前,在相关领域内,倍受国内外学者关注。该文在分析基本PSO算法的速度进化方程的基础上,提出一种能更好描述微粒进化过程的速度方程,由其引出一种具有随机惯性权重的PSO算法;通过五个典型测试函数的仿真实验,验证了其可行性,同时也表明具有随机惯性权重的PSO算法较具有线性递减惯性权重的PSO算法在收敛速度和全局收敛性方面有明显提高。  相似文献   

19.
李绍军  王惠  钱锋 《控制与决策》2006,21(10):1193-1196
针对粒子群优化算法(PSO)容易陷入局部最优值的缺点,提出一种基于遗传算法模式定理思想改进的粒子群优化算法(IPSO).新算法改善了粒子群优化算法摆脱局部极小点的能力.对典型函数的测试表明,IPSO算法的全局搜索能力有了显著提高,特别是对多峰函数能有效地避免早熟收敛问题.将改进的粒子群优化算法用于氧化反应动力学参数的优化,计算结果表明,新算法优化结果明显优于文献报道.  相似文献   

20.
董红斌  李冬锦  张小平 《计算机科学》2018,45(2):98-102, 139
针对粒子收敛速度慢、搜索精度不高和算法性能在很大程度上依赖于参数的选取等缺点,提出了一种非线性指数惯性权重粒子群优化算法(Exponential Inertia Weight in Particle Swarm Optimization,EIW-PSO)。在每次迭代的过程中, 采用粒子最大适应值和最小适应值的指数函数来动态调整 算法中的惯性权重,更有利于算法在寻优过程中跳出局部最优;同时,引入随机因子以确保种群的多样性,使粒子更快地收敛到全局最优位置。为了验证该算法的寻优性能,通过8个基准测试函数将标准PSO、线性递减惯性权重LDIW-PSO、均值自适应惯性权重MAW-PSO在不同维度和种群规模下进行测试比较。实验结果表明,提出的EIW-PSO算法具有更快的收敛速度和更高的求解精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号