首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
采用NH4Cl和HCl气体进行LiCl-KCl共晶熔盐中氧离子的去除。在使用NH4Cl和HCl气体去除LiCl-KCl共晶熔盐中的氧离子过程中,用钇稳定氧化锆测氧电极对熔盐中的氧离子浓度变化进行测定。结果表明,HCl与熔盐中氧离子反应生成H2O,并将反应产物水通过HCl载带出去。NH4Cl去除氧离子的过程也是通过NH4Cl分解的HCl与氧离子反应除去熔盐中氧离子。NH4Cl和HCl均能有效地去除LiCl-KCl熔盐中的氧离子,使氧离子浓度降低至10-5~10-4 mol/kg。  相似文献   

2.
氯化锂-氯化钾共晶熔盐是电解精炼干法后处理中最常用的电解质,其含有的杂质直接影响电流效率和产物纯度。本研究分别采用高温处理、HCl气体鼓泡和恒电位电解等方法依次去除了熔盐中的易挥发物质、氧离子和金属离子等杂质,获得了较高纯度的熔盐。采用热重分析(TGA)、电化学和电感耦合等离子体原子发射光谱(ICP-AES)等方法对比了纯化前后熔盐中各杂质的含量。研究结果表明:去除易挥发杂质的最佳处理温度范围为450~650℃;去除杂质金属离子时最佳电解电位为-2.3Vvs.Ag/AgCl(摩尔分数2%),恒电位电解800s后杂质金属离子总量低于1.5×10-6 g/g(盐)。以上研究结果表明,采用高温处理、HCl气体鼓入和恒电位电解可获得纯度较高的LiCl-KCl共晶熔盐。  相似文献   

3.
LiCl-KCl熔盐中钍的电极过程研究   总被引:1,自引:0,他引:1  
通过循环伏安法和计时电位法,研究LiCl-KCl熔盐中Th4+在723~803 K内在Mo电极上的电极过程。结果表明,Th4+在Mo电极上的电极过程受离子扩散步骤控制,扩散系数D随温度T变化的经验公式为ln D=33.94-2.879×104/T,形式电位的经验公式为E vsCl-0/Cl2=-3.45+7.5×10-4T。  相似文献   

4.
氟锂铍(FLiBe)熔盐作为液态熔盐堆的冷却剂和载体盐,具有一定的慢化性能,其热中子散射数据影响熔盐堆的中子学性能,进而影响熔盐堆物理设计和安全运行。基于通用蒙特卡罗粒子输运程序分析了液态FLiBe熔盐的热中子散射数据对65 MW熔盐堆堆芯中子能谱、不同能谱下有效增殖因数keff、核素反应率、温度反应性系数等中子学性能的影响。研究结果表明:考虑FLiBe熔盐热散射效应,堆芯中子能谱变硬,导致235U裂变反应率和keff变小,燃料的温度反应性系数中多普勒系数减小0.28×10-5 K-1,而密度反应性系数几乎无变化。当堆芯由热谱转变为相对较快的中子能谱时,FLiBe熔盐热散射效应导致235U裂变率减少的变化量降低,keff的下降幅度从9.2×10-4变为2×10-4。因此,熔盐堆堆芯物理计算需开展FLiBe熔盐的热中子散射数据影响的量化。  相似文献   

5.
本文论述了快堆MOX燃料的氧势模型和氧与金属原子比(O/M比)控制原理。Blackburn模型和点缺陷模型是两种常用的核燃料氧势模型,而离子反应平衡常数、热力学数据及实验测量数据是影响氧势模型精确度的主要因素。当要求(U0.75Pu0.25)O2-x燃料的O/M比为1.97时,若在1 750 ℃、0.1 MPa Ar-5%H2气中烧结,采用Blackburn模型进行计算,则理论上要求将氧分压控制在1.07×10-5 Pa,或将氧势控制在-386.15 kJ/mol;采用点缺陷模型进行计算,要求将氧分压控制在0.70×10-5 Pa,或将氧势控制在-393.22 kJ/mol。当要求O/M比分别为1.95、1.96、1.97、1.98、1.99、1.995时,理论上应将气体中的水分含量分别控制在370.4、739.8、1 633.7、4 403.6、17 855.4、43 064.8 ppm,或将气体露点分别控制在-30.10、-23.27、-14.98、-3.77、13.83、26.16 ℃。  相似文献   

6.
在气溶胶泄漏评估中,需深入分析气溶胶漏率与气体漏率的相关性。本文归纳总结了气体漏率和气溶胶漏率的计算方法,对不同条件下毛细管中的亚微米级气溶胶漏率进行了实验研究,分析了上游数浓度、气体流速和上游压力对气溶胶泄漏的影响。结果表明:当气体漏率高于10-4Pa·m3·s-1时,气溶胶漏率和气体漏率成线性关系;当气体漏率低于10-4Pa·m3·s-1时,气溶胶漏率的降低速率较气体漏率的更迅速,对于亚微米气溶胶,扩散沉积是造成气溶胶损失的主要机制。为方便使用,本文提出一个在一定假设条件下利用气体漏率和漏孔长度对漏孔中的气溶胶漏率进行估算的方法。  相似文献   

7.
磷钼酸铵/聚丙烯酸复合凝胶吸附剂的合成及对铯的分离   总被引:2,自引:0,他引:2  
以丙烯酸为基底合成了磷钼酸铵/聚丙烯酸复合吸附剂(AMP-PA)。采用红外光谱(FTIR)、X射线衍射(XRD)等方法对AMP-PA进行表征。研究了振荡时间、酸度、Cs+ 浓度对铯吸附的影响,及多种离子存在下吸附剂对铯离子的选择性吸附。静态实验结果表明:AMP-PA吸附铯大约5 h达到平衡;HNO3浓度在0~3.0 mol/L范围内对铯的吸附量影响不大,吸附过程符合Langmuir方程,计算得到的最大吸附量达到4.7 mg/g;采用3.0 mol/L NH4Cl+1.0 mol/L HNO3解吸,解吸率大约为70%;多种离子存在下对铯离子具有选择性吸附。动态柱实验发现,AMP-PA对铯的吸附量为4.32 mg/g,解吸率约为50.4%。在高浓度杂质离子Na+、K+、Sr2+、Co2+、Fe3+、Zn2+、Ca2+存在下,AMP-PA柱可以选择性分离铯,在铯的淋洗液中Co2+低于检测限,含量最高的Fe3+分离因子为3,浓度比起始浓度降低四个数量级。  相似文献   

8.
以丙烯酸为基底合成了磷钼酸铵/聚丙烯酸复合吸附剂(AMP-PA)。采用红外光谱(FTIR)、X射线衍射(XRD)等方法对AMP-PA进行表征。研究了振荡时间、酸度、Cs+ 浓度对铯吸附的影响,及多种离子存在下吸附剂对铯离子的选择性吸附。静态实验结果表明:AMP-PA吸附铯大约5 h达到平衡;HNO3浓度在0~3.0 mol/L范围内对铯的吸附量影响不大,吸附过程符合Langmuir方程,计算得到的最大吸附量达到4.7 mg/g;采用3.0 mol/L NH4Cl+1.0 mol/L HNO3解吸,解吸率大约为70%;多种离子存在下对铯离子具有选择性吸附。动态柱实验发现,AMP-PA对铯的吸附量为4.32 mg/g,解吸率约为50.4%。在高浓度杂质离子Na+、K+、Sr2+、Co2+、Fe3+、Zn2+、Ca2+存在下,AMP-PA柱可以选择性分离铯,在铯的淋洗液中Co2+低于检测限,含量最高的Fe3+分离因子为3,浓度比起始浓度降低四个数量级。  相似文献   

9.
通过红外光谱、气质联用和离子色谱等分析方法确定了磷酸二丁酯在后处理常见工况2.0 mol/L HNO3下的反应产物主要为丁醇、丁酸、丙酸、磷酸一丁酯和磷酸根离子等。采用离子色谱定量分析测定了磷酸一丁酯和磷酸根离子的浓度与反应时间和温度的关系,计算了磷酸二丁酯水解反应的速率常数,并对测定数据进行了计算拟合。结果表明:在110~150 ℃范围内,磷酸二丁酯的水解速率随温度的升高呈指数增长,满足准一级反应动力学方程;110 ℃和150 ℃的一级水解速率常数分别为6.30×10-3 s-1和2.10×10-1 s-1,二级水解速率常数分别为3.10×10-3 s-1和1.98×10-1 s-1;一级水解反应的指前因子为9.38×1012 s-1,对应的活化能为111.0 kJ/mol,二级水解反应的指前因子为1.09×1016 s-1,对应的活化能为135.2 kJ/mol。动力学计算值与实验值的误差在±9%以内。  相似文献   

10.
利用化学气相沉积(CVD)法研制了一种钨基硼掺杂金刚石(W/BDD)薄膜电极,通过扫描电镜和Raman光谱考察了W/BDD薄膜电极的性能,通过电化学方法测定了其在LiCl-KCl熔盐中的电化学窗口和电化学性能。结果表明,研制的W/BDD薄膜电极的BDD薄膜有较好的微观结构;W/BDD薄膜电极在LiCl-KCl熔盐中的电化学窗口约为3.5 V(-2.5~1.0 V,相对于Ag/AgCl参比极电位);电解过程中,氧离子不与W/BDD薄膜电极表面BDD薄膜层的碳反应,直接被氧化为氧原子;长时间电解不会改变电极表面薄膜层的形貌和结构。  相似文献   

11.
在LiCl-KCl共晶盐中,研究了在不同温度下La^(3+)的反应动力学机理。首先,在723~873 K范围内,利用循环伏安法(CV)测得La^(3+)的扩散系数D为3.06×10^(-5)~6.08×10^(-5)cm^(2)/s,并根据Arrhenius方程计算了La^(3+)在电解质中的扩散活化能E_(D)=34.51 kJ/mol。随后,利用电化学阻抗谱技术(EIS)研究了La^(3+)在电极上的动力学参数并测得交换电流密度i_(0)为0.48~1.39 A/cm^(2)、反应速率常数k_(0)=2.04×10^(-4)~5.90×10^(-4)cm/s及反应活化能E_(a)=35.04 kJ/mol。通过Nyquist图和拟合的等效电路图研究La^(3+)在W电极上的反应动力学机理,发现在LiCl-KCl共晶盐中La^(3+)的电化学反应速率不仅受扩散控制还受电荷转移控制,且与温度成正相关。  相似文献   

12.
以莫来石为隔膜材料,制备了用于高温氯化物(LiCl-KCl)熔盐体系的封闭式Ag/AgCl参比电极。采用LCR法分别测定了参比电极隔膜的电阻。同时,系统研究了参比电极的稳定性和重复使用性及平行性,重点研究了AgCl浓度对参比电极稳定性的影响。表征结果表明隔膜的组成为3Al2O3•2SiO2,具有良好的离子导通性。电化学研究结果表明,AgCl摩尔分数为2.0%时,参比电极可连续稳定使用40 h以上,电位差稳定在±2 mV以内;重复使用4次后(约100 h),电位变化±5 mV;±5 mA的极化电流5 s后可于15 s内恢复初始开路电位。上述研究结果表明,莫来石隔膜Ag/AgCl具有良好的稳定性、重复使用性、可逆性,可用于熔盐电化学研究及电解工艺中电极电位的控制中。  相似文献   

13.
通过循环伏安法、方波伏安法和计时电位法等研究了LiCl-KCl共晶熔盐中ZrCl_4于Mo电极上的电化学行为。探究Zr(Ⅳ)于Mo阴极的还原机理,并计算Zr(Ⅱ)的扩散系数及Zr(Ⅱ)/Zr(0)的表观标准电势。结果表明:Zr(Ⅳ)在Mo阴极还原机理为:Zr(Ⅳ)+2e=Zr(Ⅱ);Zr(Ⅱ)+2e=Zr(0)或Zr(Ⅱ)+e+Cl~-=ZrCl;ZrCl+e=Zr(0)+Cl~-;金属Zr在阳极的氧化过程为:Zr(0)-2e=Zr(Ⅱ)和Zr(Ⅱ)-2e=Zr(Ⅳ)。Zr(Ⅳ)还原为Zr(Ⅱ)和Zr(Ⅱ)还原为Zr(0)均为可逆反应,且还原过程均为扩散控制。LiCl-KCl熔盐中Zr(Ⅱ)于Mo阴极上的扩散系数与温度的关系为:ln D=-6 724/T-2.95,扩散的活化能Ea=55.9kJ/mol。Zr(Ⅱ)/Zr(0)的表观标准电位与温度的关系为:E_(Zr(Ⅱ)/Zr(0))~(Θ*)=-2.695+9.33×10~(-4) T。  相似文献   

14.
分别以CCl_(4)和HCl气体作为氯化试剂,进行了铀氧化物(主要为U_(3)O_(8))的氯化机理和各影响因素研究。以CCl_(4)为氯化试剂对U_(3)O_(8)粉末进行氯化,通过热重分析研究了氯化反应过程的机理及动力学行为,氯化产物主要为UCl_(4)。同时研究了CCl_(4)对不同种类和形态铀氧化物的氯化,UO_(2)芯块由于结构致密很难进行氯化,UO_(2)粉末和UO_(3)粉末很容易被CCl_(4)氯化,产物分别为UCl_(4)和UCl_(6)。以HCl气体为氯化试剂对LiCl-KCl熔盐中的U_(3)O_(8)粉末进行氯化,研究了反应温度、氯化时间、HCl气体流速、U_(3)O_(8)粉末投料量以及铀氧化物种类和形态的影响。结果表明,提高反应温度、延长反应时间、提高HCl气体流速,有利于氯化率的提高。推荐HCl气体氯化U_(3)O_(8)粉末的工艺参数为:氯化反应温度为500℃、HCl气体流速为0.6 L/min。  相似文献   

15.
研究了LiF加入LiCl-KCl熔盐对钆电化学及络合行为的影响,发现LiF加入LiCl-KCl熔盐后,钆、铽的还原电位差由原来的6mV变为67mV。利用电化学方法和光谱方法研究了熔盐中钆离子和铽离子的配位结构,发现LiCl-KCl-GdCl_3(5mol%)/TbCl_3(5mol%)熔盐中存在[GdCl_6]~(3-)、[TbCl_6]~(3-)的正八面体结构;考察了LiF加入LiCl-KCl熔盐对钆、铽离子结构的影响,在LiCl-KCl-GdCl_3/TbCl_3中加入LiF后,钆离子和铽离子配位结构均为络合了3个F~-和3个Cl~-的八面体结构[GdF_3Cl_3]~(3-)和[TbF_3Cl_3]~(3-),计算得到两种八面体结构的相对累积稳定常数分别为10.98和6.38。以此为理论基础,进行了LiF对LiCl-KCl熔盐中钆电解精炼的影响研究,发现将LiF加入LiCl-KCl熔盐后进行钆电解精炼时,能以更高的去污系数分离钆。  相似文献   

16.
氢材料在微量H2O、CO2、O2和N2存在下可能发生物理化学反应,使材料的物理品位下降。由于反应过程十分复杂,很难从实验上准确获取这类反应的最佳通道和具体产物信息,因此,从理论上研究氢材料分子的物理化学性质及其化学反应机制,了解化学反应过程具有十分重要的意义。本文使用Gaussian03软件包和Gaussview工具软件,在6-311G(d)全电子基函数水平上,应用二阶微扰理论优化得到了6LiH、6LiT与H2O反应的中间体、过渡态及产物的结构,总能量,振动频率和零点能等。通过计算发现6LiH、6LiT均只有1个反应通道,6LiH与H2O反应的焓变、活化能和反应速率常数分别为-156.99 kJ/mol、8.95 kJ/mol和3.75×1010(mol•dm-3)-1/s,6LiT与H2O反应的焓变、活化能和反应速率常数分别为-159.02 kJ/mol、9.92 kJ/mol和1.72×1010 (mol•dm-3)-1/s。  相似文献   

17.
利用长期浸泡的方法分析研究了压水堆二回路工况下A508Ⅲ和A106Gr.B低合金钢在乙醇胺(ETA)+二甲胺(DMA)、ETA、氨(NH3·H2O) 3种碱化剂中的均匀腐蚀行为,并利用扫描电镜、X射线光电子能谱和AES等技术分析了氧化膜的结构和组分。结果表明,在2 000 h试验后,A508Ⅲ试样在NH3·H2O中的腐蚀速率为0.15 mg/(dm2·h),而在ETA+DMA条件下的腐蚀速率为0.087 mg/(dm2·h),较在NH3·H2O中降低约42%。对于A106Gr.B材料,ETA+DMA环境的腐蚀速率相对于NH3·H2O环境下降约29.01%,说明复合碱化剂条件下,试样更耐蚀。氧化膜结构分析表明,氧化膜主要以Fe和O为主,ETA+DMA环境下的氧化膜厚度较薄,结构更加致密,氧化膜内含有N元素,说明胺分子参与了氧化膜的生成。复合碱化剂下材料耐蚀性提高的主要原因是由于复合碱化剂中的胺挥发性小于NH3·H2O,液相冷却剂pH值升高,减缓了Fe的氧化反应,另外胺分子易通过吸附作用吸附于氧化膜表面,降低了金属氧化反应的活化能,提高了材料的耐蚀性能。复合碱化剂与二回路设备材料具有较好的相容性,能有效降低设备材料的腐蚀速率,对于二回路水化学处理方法的改进有积极意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号