共查询到19条相似文献,搜索用时 62 毫秒
1.
基于加权模糊聚类算法的变压器故障诊断方法 总被引:3,自引:0,他引:3
三比值法在变压器故障诊断中得到了广泛的应用,但是此方法存在编码不连续的问题,同时注意到不同样本在模糊C均值(fuzzy C-means,FCM)算法中所起到的作用差异,根据样本间相异度的思想,为每个样本赋予相应的权值,体现它们对聚类结果的不同影响,将加权FCM聚类算法应用到三比值法中进行变压器故障诊断,另外在聚类的开始,考虑到变压器故障诊断的实际情况,对算法的初始化隶属度也进行了更适当的设置。实验结果表明,经过以上修改得到的基于加权模糊聚类算法的变压器故障诊断方法有效可行,和FCM算法相比,不但能明显提高故障诊断的收敛速度,而且能得到更加接近实际位置的故障聚类中心,具有一定的优越性。 相似文献
2.
灰色聚类与模糊聚类集成诊断变压器内部故障的方法研究 总被引:33,自引:12,他引:33
根据反映变压器绝缘状态的模糊和灰色特征,采用模糊聚类方法,对若干典型故障样本聚类成C个灰类,得到C个最优聚类中心。依据聚类中心矩阵并借助灰色系统理论,提出了一种确定故障诊断各灰类白化权函数的原则和算法,根据该算法,首先求出各待检模式状态的灰色聚类系数,进而建立了一种灰色聚类与模糊聚类相结合的变压器故障诊断的新模型,进行了大量的该模型应用实例分析,结果表明该文方法的诊断准确度高于现有的常用方法。 相似文献
3.
4.
针对传统故障诊断技术中存在诊断模型结构复杂以及收集故障样本数据非常繁琐的问题,将TOPSIS方法在Vague集下进行扩展。介绍了Vague集的基本概念及其相似度量方法,以及使用Vague集表达的语义变量集,并据此对原始样本集进行优劣排序和聚类,从而缩减了样本集的容量,使得故障特征信息量和映射空间复杂度的问题在一定程度上得以平衡。在此基础上构建了适应于变压器故障诊断的BP网络诊断模型,实现对不同类型故障的诊断。算例分析表明,此方法与传统的变压器故障诊断的方法相比较具有明显的优越性。 相似文献
5.
6.
针对模糊核聚类方法中,核函数参数的确定问题以及聚类结果的有效评价问题,提出采用差分进化算法进行核函数参数和聚类中心的同时寻优策略。并将Xie-Beni指标推广至核空间,设计了有效的适应度函数以实现聚类效果的提升。对所提出的方法进行数值试验,同时应用在电机轴承的故障诊断中,取得了不错的效果,验证了方法的可行性。 相似文献
7.
基于加权模糊核聚类的发电机组振动故障诊断 总被引:1,自引:0,他引:1
对模糊C均值(fuzzy C-means,FCM)在机组振动故障诊断中存在不足,提出了一种加权模糊核聚类方法(weighted fuzzy kernel clustering,WFKC)。该方法用Mercer核将样本从输入空间映射到高维特征空间,在特征空间进行聚类,同时考虑到不同特征对聚类结果的不同影响,利用基于样本相似度的加权方法对特征进行加权,在特征空间实现加权模糊聚类。用3组标准测试数据集验证了该方法的聚类效果和分类准确性。最后将该方法应用于发电机组故障诊断,应用实例表明所提出的方法有效,诊断结果可靠。 相似文献
8.
加权模糊核聚类法在电力变压器故障诊断中的应用 总被引:2,自引:4,他引:2
变压器油中溶解气体分析(DGA)是电力变压器故障诊断的重要方法。针对模糊C均值聚类算法用于溶解气体成分分析时存在的问题,将加权模糊核聚类方法(WFKC)引入到电力变压器故障诊断中,建立了一个新的变压器故障诊断模型。该法首先考虑到样本中不同特征对聚类结果的不同影响,利用基于样本相似度的加权方法对样本特征进行加权,然后将样本从输入空间映射到高维特征空间,在特征空间实现加权模糊核聚类。形成的模型充分考虑了不同特征对聚类结果的不同影响,能有效改善复杂数据集的聚类性能,提高了故障诊断的正确率。案例分析表明,该法能快速有效地对样本进行聚类,从而验证了该法在变压器故障诊断中的有效性和可行性。 相似文献
9.
基于核可能性聚类算法和油中溶解气体分析的电力变压器故障诊断研究 总被引:21,自引:4,他引:21
变压器油中溶解气体分析(Dissolved Gas Analysis,DGA)是电力变压器绝缘诊断的重要方法.针对模糊C均值聚类算法用于溶解气体成分分析时存在的问题,文中将核函数和可能性聚类算法相结合,提出一种简化的核可能性聚类算法,并将其用于变压器DGA数据分析,从而实现变压器的故障诊断.经实践证明,该算法能快速、有效地对样本进行聚类,且特别适用于含有噪声样本的环境. 相似文献
10.
11.
针对加权模糊聚类算法(WFCM)应用于变压器DGA分析时存在收敛速度慢、对初始值敏感的问题,提出了一种改进人工鱼群优化加权模糊聚类算法(SAAFSA-WFCM)的变压器故障诊断方法.该方法利用模拟退火算法(SA)来改进人工鱼群算法(AFSA)以求取最佳初始聚类中心,在发挥AFSA优异的全局寻优能力的同时,利用SA的概率性突跳搜索机制对AFSA实施局部优化,提高了AFSA的搜索精度.WFCM算法以得到的最佳初始聚类中心为初值进行迭代运算,最终求得更接近实际位置的聚类中心,克服了WFCM易受初值影响的缺陷,加快了收敛速度.仿真与实例分析表明,该方法可有效应用于变压器的故障诊断,并有着较高的诊断正确率和诊断效率. 相似文献
12.
基于聚类分析的故障诊断方法能够按照故障样本之间的相似性无监督地将同类故障聚为一簇,当前已成为一类有效的故障诊断策略。为解决传统聚类算法受初始聚类中心的影响,易陷入局部最优解的问题,提出一种最小最大核K均值聚类方法。该方法在聚类过程中为簇内方差赋以与其大小成正比的自动修正的权重,并引入核函数技术以处理低维输入空间的线性不可分问题,大大提高了聚类的精确性。在标准数据上将所提方法与标准K-means及K-means++比较,显示了所提算法的有效性和优越性。基于这一聚类方法提出了一种具有自学习能力的故障诊断模型。 相似文献
13.
基于聚类分析的故障诊断方法能够按照故障样本之间的相似性无监督地将同类故障聚为一簇,当前已成为一类有效的故障诊断策略。为解决传统聚类算法受初始聚类中心的影响,易陷入局部最优解的问题,提出一种最小最大核K均值聚类方法。该方法在聚类过程中为簇内方差赋以与其大小成正比的自动修正的权重,并引入核函数技术以处理低维输入空间的线性不可分问题,大大提高了聚类的精确性。在标准数据上将所提方法与标准K-means及K-means++比较,显示了所提算法的有效性和优越性。基于这一聚类方法提出了一种具有自学习能力的故障诊断模型。将该诊断模型应用于水电机组振动故障诊断,实例验证了模型的可行性。 相似文献
14.
针对变压器故障特征与故障类型关系模糊造成的三比值法编码缺失、临界值判据缺损以及同时发生的多种故障难以区分问题,提出了基于特征优化和模糊理论的变压器故障诊断方法。将测量空间中的每种故障数据分别通过高斯核函数映射至希尔伯特空间,利用主成分分析法提取主元,以主元张成的特征子空间作为最优故障特征,据此构造该种故障下的故障测度隶属度函数,根据最大隶属度原则判断故障类型。特征子空间既保留了测量空间的故障特征,同时根据核理论维度拓展特点,又能生成更有效度量故障的新特征,从而建立最优故障特征与故障类型的一一对应关系。实例分析表明,该方法的准确率高,能够弥补三比值法的不足。通过比较故障数据对于每种故障的隶属度,能够获知诊断结果的可靠性,当多种故障同时发生时,诊断结果能够为维修人员提供有益参考。 相似文献
15.
16.
提出了一种基于概率神经网络的变压器故障诊断方法,并用遗传算法优化概率神经网络的平滑因子,从而提高概率神经网络诊断的正确率。结果表明,实际的油色谱数据验证了此变压器故障诊断方法的可行性和正确性。 相似文献
17.
18.