首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
综述了锂离子电池正极材料LiMn2O4的制备,结构及其电化学性能,LiMn2O4具有尖晶石型结构,为锂离子的脱嵌与嵌入提供了三维隧道空间,它具有3V和4V两个电压平台,成为锂离子电池最有吸引力的材料。  相似文献   

2.
尖晶石LiMn2O4正极材料的研究进展   总被引:8,自引:2,他引:8  
周燕芳  钟辉 《化工进展》2003,22(2):140-145
综述了近年来锂离子电池正极材料尖晶石LiMn2O4的研究进展。主要阐述了LiMn2O4的制备方法、晶体结构、电性能以及改性方法等方面的发展状况。  相似文献   

3.
综述了锂离子电池正极材料LiMn2O4的制备、结构及其电化学性能.LiMn2O4具有尖晶石型结构,为锂离子的脱嵌与嵌入提供了三维隧道空间,它具有3 V和4 V两个电压平台,成为锂离子电池最有吸引力的材料.  相似文献   

4.
锂离子电池正极材料LiMn2O4的高温性能研究进展   总被引:1,自引:0,他引:1  
综述了尖晶石结构LiMn2O4作为锂离子电池正极材料的高温热分解和在高温充/放电过程中容量衰减的最新研究进展;概述了解决LiMn2O4作为锂离子电池正极材料的高温容量损失问题而进行的各种改性的研究情况;提出了改进LiMn2O4正极材料高温性能的建议和方法。  相似文献   

5.
本文综述了锂离子电池正极材料尖晶石型LiMn2O4的国内外研究现状,在分析尖晶石型LiMn2O4结构和其作为正极材料相关理论的基础上,阐述了合成技术,包括制备方法、合成温度、材料粒径等对LiMn2O4材料性能的影响;并就掺杂改性分析了选择合适的掺杂离子、掺杂量、合成工艺等对材料性能的影响。  相似文献   

6.
尖晶石LiMn2O4的结构和性能与制备工艺紧密相关.本文综述了近年来国内外有关尖晶石型LiMn2O4材料合成的研究进展,详细阐述了各类合成方法的优缺点及合成材料的电化学性能.并展望了LiMn2O4合成工艺的发展趋势.  相似文献   

7.
采用溶胶-凝胶法制备包覆LiCoO2的LiMn2O4的方法。以乙二醇为螫合剂,将商业化的LiMn2O4加入到醋酸钴和醋酸锂的混合溶液中,调节pH值。在水浴中搅拌后离心分离,并在高温条件下煅烧,得到产品。利用X-射线衍射和差热-热重分析方法来考察包覆LiCoO2的质量、煅烧温度和煅烧时间对晶体结构和电化学性能的影响。得到的最佳工艺条件为:LiCoO2的摩尔包覆量为7%,在800℃煅烧6h。  相似文献   

8.
锂离子电池正极材料LixMn2O4研究进展   总被引:1,自引:1,他引:1  
总结了锂离子电池正极材料LixMn2O4的合成方法,归纳了造成容量衰减问题的原因和目前为解决该问题所采用的各种方法,并且对下一步的研究工作进行了展望。  相似文献   

9.
本文综述了近年来有关锂离子电池正极材料尖晶石型LiMn2O4的制备与性能研究进展,重点讨论了尖晶石型LiMn2O4正极材料掺杂的最新研究现状。  相似文献   

10.
前驱体对锂离子电池正极材料LiMn2O4结构和性能有重要影响。综述了常见的前驱体特点及生产工艺,指出二氧化锰仍然是目前用量最大的前驱体,适当的体相掺杂是改善其性能的有效途径;用球形四氧化三锰制备高性能LiMn2O4有广阔的应用前景,改善生产工艺、降低成本必将提升球形四氧化三锰在锂离子电池领域的竞争力。  相似文献   

11.
12.
尖晶石型锰酸锂是最有发展潜力的锂离子电池正极材料之一,但目前还存在初始容量较低、容量衰减快、高温性能差等问题。最近的研究表明,表面改性是提高其电化学性能的重要方法之一。本文阐述了近年来关于LiMn2O4在表面改性方面的最新研究进展。  相似文献   

13.
LiMn2O4薄膜正极材料因具备工作电压高、安全性能好、对环境友好、成本低等优点成为全固态薄膜锂电池领域近年来研究的热点。然而,较差的循环性能制约着其作为锂电池正极材料的进一步应用。大量研究表明,金属元素掺杂可明显提高LiMn2O4薄膜的循环稳定性,受到国内外学者的重视。简要分析了尖晶石LiMn2O4薄膜容量衰减的主要原因,着重评述了近年来金属元素掺杂对其改性研究进展。  相似文献   

14.
用具有高比表面积的TiO2纳米带改性尖晶石型LiMn2O4 ,以提高其电化学性能和循环使用寿命。用X射线衍射仪、热分析仪、扫描电子显微镜和电池性能测试系统对产物的组成、热稳定性、微观形貌和充放电性能进行表征。结果表明:TiO2纳米带均匀分散在尖晶石LiMn2O4 中,而LiMn2O4 的晶体结构并未发生变化;充放电性能测试表明,当TiO2纳米带的加入量为2.0wt%时,改性LiMn2O4 具有较高的放电比容量及循环容量保持率,0.5C倍率下首次放电比容量为136mAh/g,50次循环后容量保持率为93.3%;TG—DSC数据研究表明,改性LiMn2O4 电极的热稳定性有所提高。  相似文献   

15.
以水热法所制碳球为模板,采用溶胶?凝胶法制备LiMn2O4空心多孔颗粒(PLMO),研究了煅烧温度和碳球加入量对样品相演化和表面形貌的影响,比较了PLMO和未加入碳球的LiMn2O4 (LMO)的电化学性能. 结果表明,650?750℃煅烧12 h可制得蜂窝状孔型结构的PLMO;在放电倍率0.5C下循环50次,PLMO的放电容量从126 mA?h/g降至111 mA?h/g,均高于相应LMO的放电容量. 在5C放电倍率下,PLMO的首次放电容量可达89 mA?h/g,较LMO提高约39%.  相似文献   

16.
Ni-Co复合掺杂LiMn2-2xNixCoxO4的合成与性能研究   总被引:1,自引:0,他引:1  
为了改善锂离子电池正极材料LiMn2O4的循环性能,对Ni-Co复合掺杂LiMn2O4的合成与性能进行了研究.溶胶-凝胶法合成的LiMn2O4试样为纯的立方尖晶石相,且结晶状态良好.Ni-Co复合掺杂综合了Ni掺杂效应和Co掺杂效应,不仅提高了材料的初始放电容量,而且改善了材料的电化学性能.在3.0V-4.3V充放电压范围内,初始容量达到139mAh/g,36次循环后容量仅仅衰减3.6%.  相似文献   

17.
通过L25(55)拉丁正交实验,利用极差分析法对制备LiMn2O4的反应条件进行优化,找出了合成LiMn2O4的合适工艺. 固相分段法制备LiMn2O4的过程中,氧化物的合成反应温度、氧气流量、LiOH的分解反应温度、锂锰摩尔比及恒温时间依次为主要影响因素. LiMn2O4实验电池的电化学测试表明,3 V左右放电平台可达8 h,初始放电比容量为140 mAh/g左右. 从结构化学角度分析了尖晶石型锰酸锂材料的充放电过程和产生Jahn-Teller效应的原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号