首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Detailed kinetic modeling was used in combination with flow reactor experiments to investigate the NOx adsorption/desorption and NO oxidation over Cu-ZSM-5. NO oxidation is likely an important step for selective catalytic reduction (SCR) using urea and hydrocarbons, and thus was investigated separately. First the NO2 adsorption on Brönstedt acid sites in H-ZSM-5 was modeled using an NO2 temperature programmed desorption (TPD) experiment. These results, together with the results of the NO2 TPD and NO oxidation experiments, were used in developing the model for Cu-ZSM-5. A substantial amount of NO2 was adsorbed on the catalyst. However, the results from a corresponding NO TPD experiment showed that only very small amounts of NO were adsorbed on the catalyst and therefore this step was not included in the model. The model consists of reversible steps for NO2 and O2 adsorption, O2 dissociation, NO oxidation and two steps for nitrate formation. The first nitrate formation step was disproportionation of NO2 to form NO and nitrates. This step enabled us to describe the NO production during NO2 adsorption. Further, in the reverse step the NO reacts with the nitrates and decreased their stability. Without this step the nitrates blocked the surface resulting in to low NO oxidation activity. However, we observe that nitrates can be decomposed also without the presence of NO and in the second reversible step were the nitrates decomposed to form NO2 and oxygen on the copper. These steps enabled us to describe both the TPD and activity measurement results. NO oxidation was observed even at room temperature. Interestingly, the NO2 decreased when increasing the temperature up to 100 °C and then increased as the temperature increased further. We suggest that this low-temperature NO oxidation occurs with species loosely bound on the surface and that is included in the detailed mechanism. An additional NO2 TPD at 30 °C was also modeled to describe the loosely bound NO2 on the surface. The detailed model correctly describes NO2 storage, NO oxidation and low-temperature NO oxidation.  相似文献   

2.
The NOx storage catalyst Pt/BaAl2O4-Al2O3 was prepared by a coprecipitation--impregnation method. For fresh sample, the barium mainly exists as the BaAl2O4 phase except for some BaCO3 phase. The BaAl2O4 phase is the primary NO x storage phase of the sample. EXAFS and TPD were used for investigating the mechanism of NO x storage. It is found that two kinds of Pt sites are likely to operate. Site 1 is responsible for NO chemisorption and site 2 for oxidizing NO to nitrates and nitrites. When NO adsorbs on the sample below 200 °C, it mainly chemisorbs in the form of molecular states. Such adsorption results in an increase of the coordination magnitude of Pt-O, and a decrease of that of Pt-Pt and Pt-Cl. The coordination distance of Pt-Pt, Pt-Cl and Pt-O also increases. When the adsorption occurs above 200 °C, NO can be easily oxidized by O2, and stored as nitrites or nitrates at the basic BaAl2O4. Site 2 is regenerated quickly. A high adsorption temperature is favorable for nitrate formation.  相似文献   

3.
A novel dual‐zone fluidized bed reactor was proposed for the continuous adsorption and reduction of NOx from combustion flue gases. The adsorption and reaction behaviour of such a reactor has been simulated in a fixed bed reactor using Fe/ZSM‐5 catalyst and propylene reductant with model flue gases. Fe/ZSM‐5 exhibited acceptable activity at T = 350°C and GHSV = 5000 h?1 when O2 concentration was controlled at levels lower than 1% with a HC to NO molar ratio of about 2:1. XPS and BET surface area measurement revealed the nature of the deactivation of the catalyst. Those performance data demonstrated the feasibility of a continuous dual‐zone fluidized bed reactor for catalytic reduction of NOx under lean operating conditions.  相似文献   

4.
Three model catalysts (Pt/Al2O3, Pt/TiO2, Pt/V2O5/TiO2) were examined in regard to their NO2 formation ability under a changing lean gas composition. The results show that the NO to NO2 oxidation function as well as the NO x reduction under lean gas conditions is affected by a change in the lean gas atmosphere. The NO oxidation activity also decreased with time, for Pt/Al2O3 and Pt/TiO2, and a possible explanation may be platinum oxide formation. This deactivation was not observed for Pt/V2O5/TiO2.  相似文献   

5.
The NO x adsorption mechanism on Pt/BaO/Al2O3 catalysts was investigated by performing NO x storage/reduction cycles, NO2 adsorption and NO + O2 adsorption on 2%Pt/(x)BaO/Al2O3 (x = 2, 8, and 20 wt%) catalysts. NO x uptake profiles on 2%\Pt/20%BaO/Al2O3 at 523 K show complete uptake behavior for almost 5 min, and then the NO x level starts gradually increasing with time and it reaches 75% of the inlet NO x concentration after 30 min time-on-stream. Although this catalyst shows fairly high NO x conversion at 523 K, only ~2.4 wt% out of 20 wt% BaO is converted to Ba(NO3)2. Adsorption studies by using NO2 and NO + O2 suggest two different NO x adsorption mechanisms. The NO2 uptake profile on 2%Pt/20%BaO/Al2O3 shows the absence of a complete NO x uptake period at the beginning of adsorption and the overall NO x uptake is controlled by the gas–solid equilibrium between NO2 and BaO/Ba(NO3)2 phase. When we use NO + O2, complete initial NO x uptake occurs and the time it takes to convert ~4% of BaO to Ba(NO3)2 is independent of the NO concentration. These NO x uptake characteristics suggest that the NO + O2 reaction on the surface of Pt particles produces NO2 that is subsequently transferred to the neighboring BaO phase by spill over. At the beginning of the NO x uptake, this spill-over process is very fast and so it is able to provide complete NO x storage. However, the NO x uptake by this mechanism slows down as BaO in the vicinity of Pt particles are converted to Ba(NO3)2. The formation of Ba(NO3)2 around the Pt particles results in the development of a diffusion barrier for NO2, and increases the probability of NO2 desorption and consequently, the beginning of NO x slip. As NO x uptake by NO2 spill-over mechanism slows down due to the diffusion barrier formation, the rate and extent of NO2 uptake are determined by the diffusion rate of nitrate ions into the BaO bulk, which, in turn, is determined by the gas phase NO2 concentration.  相似文献   

6.
Flow reactor experiments and kinetic modeling have been performed in order to study the mechanism and kinetics of NOx reduction over Pt/SiO2 catalysts with hydrogen as the reducing agent. The experimental results from NO oxidation and reduction cycles showed that N2O and NH3 are formed when NOx is reduced with H2. The NH3 formation depends on the H2 concentration and the selectivity to NH3 and N2O is temperature dependent. A previous model has been used to simulate NO oxidation and a mechanism for NOx reduction is proposed, which describes the formation/consumption of N2, H2O, NO, NO2, N2O, NH3, O2 and H2. A good agreement was found between the performed experiments and the model.  相似文献   

7.
Reactions which can produce and consume isocyanic acid (HNCO) over two types of catalysts active for the reduction of nitrogen oxides have been investigated. More than 1000 ppm HNCO can be produced by the reduction of 3000 ppm NO with H2/CO mixtures over a Pt/SiO2 catalyst. Complete hydrolysis of HNCO to ammonia and carbon dioxide occurs if even weakly catalytic materials, such as CeO2/SiO2 and BaO/SiO2, are placed downstream. Isocyanic acid is also involved as an intermediate in the reaction of nitromethane over CoZSM5 and CuZSM5 under the conditions of hydrocarbon SCR. In the initial stages of reaction there is complete conversion through to N2 with CuZSM5 but the process stops at ammonia with CoZSM5 at temperatures below 350°C. In both cases, but especially with CoZSM5, isocyanic acid becomes observable as the catalyst deactivates during continuous exposure at temperatures below about 290°C. In situ FTIR measurements indicate that deactivation is due to a reaction between isocyanic acid and ammonia which generates cyclic striazine compounds.  相似文献   

8.
Olsson  Louise  Jozsa  Peter  Nilsson  Mikael  Jobson  Edward 《Topics in Catalysis》2007,42(1-4):95-98
A commercial NOx storage catalyst (Pt, BaO and alumina containing) was investigated by temperature programmed desorption (TPD) experiments in the temperature range 100–400 °C. The catalyst stored a substantial amount of NOx at 100 °C using NO + O2. Nitrites or loosely bound NO species are suggested for this storage, since no NO was oxidised at this low temperature. In addition, the released NOx during the temperature ramp consisted of mainly NO and at lower temperatures the NO2 dissociation is limited. Water and CO2 was found to decrease the storage substantially, 92% for the NO + O2 adsorption at 100 °C. The total storage for 60 min using NO2 + O2 at 200 °C was similar when introducing CO2 and H2O. However, the initial total uptake of NOx was decreased. Initially we probably formed loosely bound NOx species, which likely are strongly influenced by water and CO2. After longer time periods are barium nitrates probably formed and they can remove the carbonates by forming stable nitrates, thus resulting in the same total uptake of NOx.  相似文献   

9.
The selective reduction of NO by C3H8 is performed on copper-based catalysts: Cu/Al2O3, Cu/SiO2, Cu/SiO2–Al2O3 solids, fresh and hydrothermally-treated Cu-MFI with various Si/Al ratios. For all the Cu-MFI solids and for the non-zeolitic supported-copper solids with low copper loadings, O2 promotes the reduction of NO. The C3H8–NO reaction rate correlates with the number of accessible and isolated Cun+ ions deduced from the infrared spectroscopy of adsorbed CO. When only one type of sites is detected, the FTIR spectroscopy of adsorbed CO allows an estimation of the copper dispersion. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The migration of potassium in an iron/H‐ZSM‐5 bifunctional system was investigated by pressing K/Fe2O3 and H‐ZSM‐5 in a pellet using 2 t of pressure. These pellets were heated at 350 °C in air for a number of days. Migration of potassium was visualized using energy‐dispersive X‐ray profiling. The distribution of potassium in the Fe2O3 phase and the H‐ZSM‐5 phase was approximately constant, with a step change over the phase boundary. The step change varied as a function of the heating time. The amount of potassium migrated from the Fe2O3 phase to the H‐ZSM‐5 phase was quantified using NH3‐TPD. It is shown that an equilibrium distribution between potassium in the Fe2O3 phase and the H‐ZSM‐5 phase is obtained after ca. 7 days of heating.  相似文献   

11.
MFI crystals or films with controlled thicknesses and different Si/Al ratios were grown on seeded cordierite monoliths using a clear synthesis mixture with template or a template-free gel. The materials were analyzed by scanning electron microscopy, X-ray diffraction, inductively coupled plasma-atomic emission spectrometry, X-ray photoelectron spectroscopy, thermogravimetric analysis and sorption experiments using N2 or NO2 adsorbates. The films were uniformly distributed over the support surface. As expected, the specific monolayer N2 adsorption capacity (mol/gzeolite) was constant and independent of film thickness. The specific molar NO2 adsorption capacity was significantly lower than the specific molar monolayer N2 adsorption capacity, indicating that NO2 is adsorbed at specific sites rather than evenly distributed in a monolayer. A number of NO2 adsorption sites with varying strengths were observed by TPD experiments. At 30 °C, the amount of adsorbed NO2 in the MFI films increased with increasing Al and Na content as opposed to the N2 adsorption capacity, which was independent of these parameters. At 200 °C, the adsorbed amount of NO2 was lower than at 30 °C and apparently independent on Al concentration in the Na-MFI films. These results indicate that different mechanisms are involved in NO2 adsorption. NO2 may adsorb weakly on Na+ cations and also react with silanol groups and residual water in the zeolite, the latter two results in more strongly bound species. Upon NO2 adsorption, formation of NO was observed. This work represents the first systematic study of the effects of Al and Na content on NO2 adsorption in MFI films.  相似文献   

12.
In/HZSM-5/In2O3 catalyst that contained two different kinds of In induced by the impregnating and the physical mixing method respectively has shown remarkable activity for the CH4-SCR of NO x comparing with In/HZSM-5. The addition of In2O3 into In/HZSM-5 improved the NO conversion through enhancing the adsorption of NO x over In/HZSM-5.  相似文献   

13.
In this paper an XRD, FTIR and TPD investigation of NO2 surface adsorption sites of , Al2O3 and barium supported , Al2O3 is reported. Aim of this study is to bring additional light on the surface structures involved in NOx adsorption. Two samples of barium supported aluminas have been prepared and aged at 800 °C. These samples were characterised in comparison with the relative alumina support. The XRD characterisation of these samples shows the presence of barium carbonate and barium aluminate supported on alumina. The comparison of the FTIR spectra, before and after NO2 adsorption, has revealed the formation, upon NO2 contact, of a complex variety of nitrate and nitrite groups. The thermal desorption of nitrate and nitrite species has been simultaneously studied by means of FTIR spectroscopy and by TPD technique. By comparing the structural, adsorptive and spectroscopic results obtained on alumina and on barium supported alumina samples, a hypothesis on the basic sites active in NO2 adsorption and of the possible decomposition paths induced by thermal heating are proposed.  相似文献   

14.
Modelling of the phenomena involved during the adsorption of NOx on NOx trap catalysts was developed. The aim of the model is the prediction of the quantity of stocked barium nitrate as well as the emissions of NO and NO2, as a function of time and temperature. The mechanism of the process is sounded on the adsorption of gas species (NO, NO2, O2) on platinum sites, equilibrium reaction between adsorbed species followed by the formation of Ba(NO3)2. This formation of barium nitrate is limited by the thermal decomposition reaction which liberates NO in the gas phase. The kinetic constant of decomposition of barium nitrate was determined by temperature programmed thermogravimetry on pure Ba(NO3)2, using the method of Freeman and Carroll. Other kinetic constants bound to the mechanism were estimated by fitting the results of the model to experimental results.The mechanism was validated for various values of the molar fraction of O2, the molar fraction of NO and various values of the NO/NO2 ratio in the gas entering the reactor. It was also tested with different catalyst compositions (variation of the platinum and BaO concentrations). The importance of oxygen in the process was clearly demonstrated as well as the promoting role of NO2.  相似文献   

15.
The mechanical mixing of Mn2O3 or CeO2 to Ce-ZSM-5 considerably enhanced the rate of the reduction of NO by propene in the low to medium temperature region, although Mn2O3 or CeO2 itself was much less active for this reaction. In contrast, Mn2O3 was highly active and CeO2 was moderately active for the oxidation of NO to NO2. On the basis of the comparison of the rates of the C3H6 + O2, NO + C3H6 + O2 and NO2 + C3H6 + O2 reactions over these catalysts, a bifunctional mechanism is proposed, in which Mn2O3 and CeO2 accelerate the oxidation of NO and the subsequent reaction steps between NO2 and propene proceed on Ce-ZSM-5.  相似文献   

16.
Ag/Al2O3 catalysts with 1 wt% SiO2 or TiO2 doping in alumina support have been prepared by wet impregnation method and tested for sulphur tolerance during the selective catalytic reduction (SCR) of NOx using propene under lean conditions. Ag/Al2O3 showed 44% NOx conversion at 623 K, which was drastically reduced to 21% when exposed to 20 ppm SO2. When Al2O3 support in Ag/Al2O3 was doped with 1 wt% SiO2 or TiO2 the NOx conversion remained constant in presence of SO2 showing the improved sulphur tolerance of these catalysts. Subsequent water addition does not induce significant deactivation. On the contrary, a slight promotional effect on the activity of NO conversion to nitrogen is observed after Si and Ti incorporation. FTIR study showed the sulphation of silver and aluminum sites of Ag/Al2O3 catalysts resulting in the decrease in the formation of reactive intermediate species such as –NCO, which in turn decreases NOx conversion to N2. In the case of Ag/Al2O3 doped with SiO2 or TiO2, formation of silver sulphate and aluminum sulphate was drastically reduced, which was evident in FTIR resulting in remarkable improvement in the sulphur tolerance of Ag/Al2O3 catalyst. These catalysts before and after the reaction have been characterized with various techniques (XRD, BET surface area, transmittance FTIR and pyridine adsorption) for physico-chemical properties.  相似文献   

17.
《Fuel》2007,86(10-11):1577-1586
The NO2, NO (O2) adsorption and temperature programmed desorption (TPD) were studied systematically to probe into the selective catalytic reduction of NO by methane (CH4–SCR) over CoH-ZSM-5 (SiO2/Al2O3 = 25, Co/Al = 0.132–0.312). Adsorption conditions significantly affect the adsorption of NO, NO2 and NO + O2. Adsorbed NO species are unstable and desorbed below the reactive temperature 523 K. Increasing adsorption temperature results in the decrease of the adsorbed NO species amount. The amount of –NOy species formed from NO2 adsorption increases with the increase of NO2 concentration in the adsorption process, while decreases significantly with the increase of adsorption temperature. Though NO species are adsorbed weakly on CoH-ZSM-5, competitive adsorption between NO and –NOy species decreases the amount of adsorbed –NOy species. Similar desorption profiles of NO2 were obtained over CoH-ZSM-5 while they were contacted with NO2 or NO + O2 followed by TPD. If NO2 was essential to form adsorbed –NOy species, the amount of adsorbed –NOy species for NO + O2 adsorption should be the least among the adsorptions of NO2, NO + O2 and NO + NO2 because of the lowest NO2 concentration and highest NO concentration. In fact, the amount of adsorbed –NOy species is between the other two adsorption processes. These indicate that the formation of adsorbed –NOy species may not originate from NO2.  相似文献   

18.
In H2 TPD from Ru/SiO2, two desorption peaks were observed. Both exchanged H for D in sequential dosing experiments. These hydrogen adsorption states were also found for Ru-Cu/SiO2, along with another, higher temperature state at 400–500 K. This last state was neither exchangeable with nor replaceable by deuterium subsequently dosed at 150 K. The three chemisorption states are attributed to hydrogen held at the interface between Ru and SiO2 (< 300 K), adsorbed on Ru particles (310–380 K), and held at the Ru-Cu interface (> 400 K).  相似文献   

19.
Barium-containing NO x storage catalyst showed serious deactivation under thermal exposure at high temperatures. To elucidate the thermal deterioration of the NO x storage catalyst, four types of model catalyst, Pt/Al2O3, Ba/Al2O3, Pt–Ba/Al2O3, and a physical mixture of Pt/Al2O3 + Ba/Al2O3 were prepared and their physicochemical properties such as BET, NO TPD, TGA/DSC, XRD, and XPS were evaluated while the thermal aging temperature was increased from 550 to 1050°C. The fresh Pt–Ba/Al2O3 showed a sorption capacity of 3.35 wt%/g-cat. but the aged one revealed a reduced capacity of 2.28 wt%/g-cat. corresponding to 68% of the fresh one. It was found that this reduced sorption capacity was directly related to the deterioration of the NO x storage catalyst by thermal aging. The Ba on Ba/Al2O3 and Pt–Ba/Al2O3 catalysts began to interact with alumina to form Ba–Al solid alloy above 600°C and then transformed into stable BaAl2O4 having a spinel structure. However, no phase transition was observed in the Pt/Al2O3 catalyst having no barium component, even after aging at 1050°C.  相似文献   

20.
The interactions of NO, O2 and NO2 with Fe‐ZSM‐5, as well as the reduction of NO by C3H8 in the presence of O2, have been investigated using in situ infrared spectroscopy. The sample of Fe‐ZSM‐5 (Fe/Al =0.56) was prepared by solid‐state ion exchange. NO adsorption in the absence of O2 produces only mono‐ and dinitrosyl species associated with Fe2+ cations. Adsorbed NO2/NO3 species are formed via the reaction of adsorbed O2 with gas‐phase NO or by the adsorption of gas‐phase NO2. The reduction of NO in the presence of O2 begins with the reaction of gas‐phase C3H8 with adsorbed NO2/NO3 species to form a nitrogen‐containing polymeric species. A reaction pathway is proposed for the catalyzed reduction of NO by C3H8 in the presence of O2. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号