首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the construction and performance of a novel photoelectron-photoion coincidence machine in our laboratory in Amsterdam to measure the full three-dimensional momentum distribution of correlated electrons and ions in femtosecond time-resolved molecular beam experiments. We implemented sets of open electron and ion lenses to time stretch and velocity map the charged particles. Time switched voltages are operated on the particle lenses to enable optimal electric field strengths for velocity map focusing conditions of electrons and ions separately. The position and time sensitive detectors employ microchannel plates (MCPs) in front of delay line detectors. A special effort was made to obtain the time-of-flight (TOF) of the electrons at high temporal resolution using small pore (5 microm) MCPs and implementing fast timing electronics. We measured the TOF distribution of the electrons under our typical coincidence field strengths with a temporal resolution down to sigma=18 ps. We observed that our electron coincidence detector has a timing resolution better than sigma=16 ps, which is mainly determined by the residual transit time spread of the MCPs. The typical electron energy resolution appears to be nearly laser bandwidth limited with a relative resolution of DeltaE(FWHM)/E=3.5% for electrons with kinetic energy near 2 eV. The mass resolution of the ion detector for ions measured in coincidence with electrons is about Deltam(FWHM)/m=14150. The velocity map focusing of our extended source volume of particles, due to the overlap of the molecular beam with the laser beams, results in a parent ion spot on our detector focused down to sigma=115 microm.  相似文献   

2.
The sensitivity (limit of detection) of high-resolution Rutherford backscattering spectroscopy (HRBS) is mainly determined by the background noise of the spectrometer. There are two major origins of the background noise in HRBS, one is the stray ions scattered from the inner wall of the vacuum chamber of the spectrometer and the other is the dark noise of the microchannel plate (MCP) detector which is commonly used as a focal plane detector of the spectrometer in HRBS. In order to reject the stray ions, several barriers are installed inside the spectrometer and a thin Mylar foil is mounted in front of the detector. The dark noise of the MCP detector is rejected by the coincidence measurement with the secondary electrons emitted from the Mylar foil upon the ion passage. After these improvements, the background noise is reduced by a factor of 200 at a maximum. The detection limit can be improved down to 10 ppm for As in Si at a measurement time of 1 h under ideal conditions.  相似文献   

3.
A novel multi-electron-ion coincidence spectrometer developed on the basis of a 1.5 m-long magnetic-bottle electron spectrometer is presented. Electrons are guided by an inhomogeneous magnetic field to a detector at the end of the flight tube, while a set of optics is used to extract counterpart ions to the same detector, by a pulsed inhomogeneous electric field. This setup allows ion detection with high mass resolution, without impairing the high collection efficiency for electrons. The performance of the coincidence spectrometer was tested with double ionization of carbon disulfide, CS(2) → CS(2)(2+) + e(-) + e(-), in ultrashort intense laser fields (2.8 × 10(13) W/cm(2), 280 fs, 1030 nm) to clarify the electron correlation below the rescattering threshold.  相似文献   

4.
Collection of the secondary electrons in the scanning electron microscope was simulated and the results have been experimentally verified for two types of the objective lens and three detection systems. The aberration coefficients of both objective lenses as well as maximum axial magnetic fields in the specimen region are presented. Compared are a standard side‐attached secondary electron detector, in which only weak electrostatic and nearly no magnetic field influence the signal trajectories in the specimen vicinity, and the side‐attached (lower) and upper detectors in an immersion system with weak electrostatic but strong magnetic field penetrating towards the specimen. The collection efficiency was calculated for all three detection systems and several working distances. The ability of detectors to attract secondary electron trajectories for various initial azimuthal and polar angles was calculated, too. According to expectations, the lower detector of an immersion system collects no secondary electrons I and II emitted from the specimen and only backscattered electrons and secondary electrons III form the final image. The upper detector of the immersion system exhibits nearly 100% collection efficiency decreasing, however, with the working distance, but the topographical contrast is regrettably suppressed in its image. The collection efficiency of the standard detector is low for short working distances but increases with the same, preserving strong topographical contrast.  相似文献   

5.
Experimentally, scintillator detectors used in scanning electron microscopy (SEM) to record backscattered electrons (BSE) show a noticeable difference in detection efficiency in different parts of their active zones due to light losses transport in the optical part of the detector. A model is proposed that calculates the local efficiency of the active parts of scintillator detectors of arbitrary shapes. The results of these calculations for various designs are presented.  相似文献   

6.
J. Zach  H. Rose 《Scanning》1986,8(6):285-293
A new detection method is proposed allowing an efficient extraction of the secondary electrons without affecting the scanning spot of the primary beam. The suggested detector arrangements can be regarded as generalized Wien filters whose electric and magnetic fields do not affect the primary electrons with average beam energy, yet strongly influence the paths of the secondary electrons. The new detectors are especially useful in low-voltage scanning electron microscopy.  相似文献   

7.
The results of experiments with a time-of-flight detector for detecting rare ions at the output of the accelerating mass spectrometer of the Institute of Nuclear Physics (Siberian Branch, Russian Academy of Sciences) are described. The operation of this detector is based on detection of electron emission from thin films by means of microchannel plates. Owing to the small thickness of films, ions can sequentially pass through several films—this is the basis of the time-of-flight system for identifying isotopes. The high time resolution of detectors allows a significant decrease in the external-radiation background compared to one semiconductor complete-absorption detector that measures the ion energy.  相似文献   

8.
A diagnostic technique based on the Cherenkov effect is proposed for detection and characterization of fast (super-thermal and runaway) electrons in fusion devices. The detectors of Cherenkov radiation have been specially designed for measurements in the ISTTOK tokamak. Properties of several materials have been studied to determine the most appropriate one to be used as a radiator of Cherenkov emission in the detector. This technique has enabled the detection of energetic electrons (70 keV and higher) and the determination of their spatial and temporal variations in the ISTTOK discharges. Measurement of hard x-ray emission has also been carried out in experiments for validation of the measuring capabilities of the Cherenkov-type detector and a high correlation was found between the data of both diagnostics. A reasonable agreement was found between experimental data and the results of numerical modeling of the runaway electron generation in ISTTOK.  相似文献   

9.
A method of improving the detection limits of microanalysis using electron energy losses due to inner-shell excitation is proposed. This is based on coincidence detection of the energy-loss electrons with another signal which also results from inner-shell excitations, i.e., Auger electrons or characteristic X-rays. It is concluded that there will be a significant improvement in the detection of monolayers on a homogeneous monatomic substrate by using coincidence of energy-loss electrons with Auger electrons.  相似文献   

10.
A novel principle of an in-lens detector of very slow electrons is described and the detector efficiency discussed. The detector was built into a coaxial column for a Cylindrical Mirror Analyser for Auger electron microanalysis. In order to obtain a very low energy scanned imaging, a cathode lens was formed between the final electrode of the column and a negatively biased specimen. The signal electrons accelerated within the cathode lens field enter the column and after being mirrored back impact a micro-channel-plate based detector fitted around the optical axis. The acceptance of the detector, expressed as a ratio of the number of electrons impacting the detector to the full emission of a cosine source, was calculated to be 0.86 for 1 eV and 0.985 for 10 eV electrons. Then, the efficiency of conversion into output pulses is 0.35 and 0.31, respectively; these parameters are superior to those of conventional SEM detectors for secondary electrons. Micrographs taken at low energies ranging down to units of eV are presented.  相似文献   

11.
R. Autrata 《Scanning》1984,6(4):174-182
The double detector system described here is a simple device suitable for any SEM. It permits efficient imaging of specimen surfaces in either the secondary electron (SE) or backscattered electron (BSE) mode. The BSE detector is an annular single-crystal scintillator made of yttrium aluminium garnet (YAG) and the SE detector has a scintillator of the same material. Both detectors have their own light guides which are connected to a single photomultiplier. The choice of signal is made with a mechanical diaphragm mounted on a flange between the light guide and the photomultiplier. The SE detector may be replaced by a second BSE detector to allow the detection of “low” take-off angle BSEs to provide information which differs from that given by the annular BSE detector which operates to detect BSEs with a “high” take-off angle. In this way it is possible to image either material or topographic contrast with high resolution and to take advantage of the choice of detected electrons.  相似文献   

12.
T Agemura  S Fukuhara  H Todokoro 《Scanning》2001,23(6):403-409
A measurement technique for incident electron current in secondary electron (SE) detectors, especially the Everhart-Thornley (ET) detector, based on signal-to-noise ratio (SNR), which uses the histogram of a digital scanning electron microscope (SEM) image, is described. In this technique, primary electrons are directly incident on the ET detector. This technique for measuring the correlation between incident electron current and SNR is applicable to the other SE detectors. This correlation was applied to estimate the efficiency of the ET detector itself, to evaluate SEM image quality, and to measure the geometric SE collection efficiency and the SE yield. It was found that the geometric SE collection efficiency at each of the upper and lower detectors of a Hitachi S-4500 SEM was greater than 0.78 at all working distances.  相似文献   

13.
Abstract

A β+–γ discrimination set‐up was developed and applied to the 22Na radioisotope. The radioisotope emits positrons (β+) and these positrons create γ rays by annihilating with electrons. These annihilation γ rays were used here, and the discrimination between these positrons and γ rays was investigated by the coincidence measurement between time signals and the energy signals. The detection system presented here uses a 3 inch (diameter) by 3 inch (length) NaI(Tl) inorganic scintillation detector for γ detection and 3 inch (diameter) by 3 inch (length) plastic scintillation detector for β+ detection.  相似文献   

14.
Energy-sensitive calorimetric detectors that operate at low temperatures ("cryogenic detectors") have recently been applied for the first time as ion detectors in time-of-flight mass spectrometry. Compared to conventional, ionization-based detectors, which rely on secondary electron formation or the charge created in a semiconductor, cryogenic detectors measure low-energy solid state excitations created by a particle impact. This energy sensitivity of cryogenic detectors results in several potential advantages for TOF-MS. Cryogenic detectors are expected to have near 100% efficiency even for very large, slow-moving molecules, in contrast to microchannel plates whose efficiency drops considerably at large mass. Thus, cryogenic detectors could contribute to extending the mass range accessible by TOF-MS and help improving detection limits. In addition, the energy resolution provided by cryogenic detectors can be used for charge discrimination and studies of ion fragmentation, ion-detector interaction, and internal energies of large molecular ions. Cryogenic detectors could therefore prove to be a valuable diagnostic tool in TOF-MS. Here, we give a general introduction to the cryogenic detector types most applicable to TOF-MS including those types already used in several TOF-MS experiments. We review and compare the results of these experiments, discuss practical aspects of operating cryogenic detectors in TOF-MS systems, and describe potential near future improvements of cryogenic detectors for applications in mass spectrometry.  相似文献   

15.
The manufacturing technique and the main characteristics of large-volume HPGe detectors with a capacitance of ∼0.5 pF are described. Based on the developed technique, it is possible to produce a detector such that it is comparable in mass to a coaxial HPGe detector, but its energy resolution and detection threshold are close to the values characteristic of small X-ray HPGe detectors.  相似文献   

16.
A velocity map imaging/ion time-of-flight spectrometer designed specifically for pump-probe experiments combining synchrotron and laser radiations is described. The in-house built delay line detector can be used in two modes: the high spatial resolution mode and the coincidence mode. In the high spatial resolution mode a kinetic energy resolution of 6% has been achieved. The coincidence mode can be used to improve signal-to-noise ratio for the pump-probe experiments either by using a gate to count electrons only when the laser is present or by recording coincidences with the ion formed in the ionization process.  相似文献   

17.
分析了高速空间相干光平衡探测器的电路结构和噪声性能,明确了平衡探测器的关键技术参数与电路结构之间的关系。采用电阻取样型和双跨阻放大器(TIA)合成型结构设计了两种高速空间平衡光电探测器,并对其性能参数进行了实验验证。实验显示:两种高速空间相干光电探测器均可用于高速空间相干探测,且双TIA型电压合成型平衡探测器比电阻取样型平衡探测器具有更高的探测灵敏度和更好的抗噪声性能。在通信速率为5Gbps,误码率10~(-8)条件下电阻取样型平衡探测器实测最优探测灵敏度为-33.51dBm,双TIA型电压合成型平衡探测器实测最优灵敏度为-43.4dBm。对比Discovery公司通信速率为5Gbps的平衡探测器产品,双TIA型电压合成型探测灵敏度提高了近8dB。结果表明高速空间相干光电探测器的结构研究为创建高灵敏的高速空间相干光通信系统提供了理论基础。  相似文献   

18.
A method for three‐dimensional quantitative surface characterization for scanning electron microscopy is presented. The method used a quadruple scintillator detector developed by us. A surface reconstruction algorithm was performed by special software, with new algorithms for error compensation. Among these errors, detector shadowing was of particular importance. This was due to the disturbance in integration continuity when one or more detectors was screened from the flow of electrons. Several methods for the reduction of this error have been proposed and tested by us. The methods were based on software processing of complementary information, such as unshadowed detector signals, shadow depth and modified integration schemes.  相似文献   

19.
An upgraded x-ray spectroscopy diagnostic is used to measure the distribution of fast electrons in MST and to determine Z(eff) and the particle diffusion coefficient D(r). A radial array of 12 CdZnTe hard-x-ray detectors measures 10-150 keV Bremsstrahlung from fast electrons, a signature of reduced stochasticity and improved confinement in the plasma. A new Si soft-x-ray detector measures 2-10 keV Bremsstrahlung from thermal and fast electrons. The shaped output pulses from both detector types are digitized and the resulting waveforms are fit with Gaussians to resolve pileup and provide good time and energy resolution. Lead apertures prevent detector saturation and provide a well-known etendue, while lead shielding prevents pickup from stray x-rays. New Be vacuum windows transmit >2?keV x-rays, and additional Al and Be filters are sometimes used to reduce low energy flux for better resolution at higher energies. Measured spectra are compared to those predicted by the Fokker-Planck code CQL3D to deduce Z(eff) and D(r).  相似文献   

20.
Vehicle detection in still images is a comparatively difficult task.This paper presents a method for this task by using boosted local pattem detector constructed from two local features including Haar-like and oriented gradient features.The whole process is composed of three stages.In the first stage,local appearance features of vehicles and non-vehicle objects are extracted.Haar-like and oriented gradient features arc extracted separately in this stage as local features.In the second stage,Adaboost algorithm is used to select the mast discriminative features as weak detectors from the two local feature sets,and a strong local pattern detector is built by the weighted combination of these selected weak detectors.Finally,vehicle detection can be performed in still images by using the boosted strong local feature detector.Experiment results show that the local pattern detectur constructed in this way combines the advantages of Haar-like and oriented gradient features,and can achieve better detection results than the datector by using single Haar-like features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号