首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 498 毫秒
1.
The objective of the paper is to establish a comprehensive resource-based life cycle impact assessment (LCIA) method which is scientifically sound and that enables to assess all kinds of resources that are deprived from the natural ecosystem, all quantified on one single scale, free of weighting factors. The method is based on the exergy concept. Consistent exergy data on fossils, nuclear and metal ores, minerals, air, water, land occupation, and renewable energy sources were elaborated, with well defined system boundaries. Based on these data, the method quantifies the exergy "taken away" from natural ecosystems, and is thus called the cumulative exergy extraction from the natural environment (CEENE). The acquired data set was coupled with a state-of-the art life cycle inventory database, ecoinvent. In this way, the method is able to quantitatively distinguish eight categories of resources withdrawn from the natural environment: renewable resources, fossil fuels, nuclear energy, metal ores, minerals, water resources, land resources, and atmospheric resources. Third, the CEENE method is illustrated for a number of products that are available in ecoinvent, and results are compared with common resource oriented LCIA methods. The application to the materials in the ecoinvent database showed that fossil resources and land use are of particular importance with regard to the total CEENE score, although the other resource categories may also be significant.  相似文献   

2.
The focus in environmental research is shifting from emission abatement to critical process analysis, including assessment of resource consumption. The exergy theory offers a thermodynamic methodology to account for the consumption of natural resources. However, exergy data on mineral resources available in the literature are inadequate to apply to exergetic life cycle analysis, due to incompleteness, inconsistencies, and a dated thermochemical basis. An uncertainty assessment of the data has to be performed as well. In this work, three recent thermochemical databases were applied to evaluate the chemical exergy of 85 elements and 73 minerals, 21 of which had not yet been quantified in the literature. The process required the choice of a new reference species for aluminum. Muscovite was selected, giving rise to a chemical exergy of 809.4 kJ/mol for aluminum. The theory proved to be robust for the exergy of chemical elements, as exergy values differing by 1.2% on average from most recent literature were found. On the contrary, the exergy values for minerals differed by factors up to 14 from literature values, due to the application of recent thermochemical values and consistently selected reference species. The consistent dataset of this work will enable straightforward resource intake evaluation through an exergetic life cycle assessment.  相似文献   

3.
The climate change impacts of U.S. petroleum-based fuels consumption have contributed to the development of legislation supporting the introduction of low carbon alternatives, such as biofuels. However, the potential greenhouse gas (GHG) emissions reductions estimated for these policies using life cycle assessment methods are predominantly based on deterministic approaches that do not account for any uncertainty in outcomes. This may lead to unreliable and expensive decision making. In this study, the uncertainty in life cycle GHG emissions associated with petroleum-based fuels consumed in the U.S. is determined using a process-based framework and statistical modeling methods. Probability distributions fitted to available data were used to represent uncertain parameters in the life cycle model. Where data were not readily available, a partial least-squares (PLS) regression model based on existing data was developed. This was used in conjunction with probability mixture models to select appropriate distributions for specific life cycle stages. Finally, a Monte Carlo simulation was performed to generate sample output distributions. As an example of results from using these methods, the uncertainty range in life cycle GHG emissions from gasoline was shown to be 13%-higher than the typical 10% minimum emissions reductions targets specified by low carbon fuel policies.  相似文献   

4.
The modification of emissions of climate-sensitive exhaust compounds such as CO(2), NO(x), hydrocarbons, and particulate matter from medium-speed marine diesel engines was studied for a set of fossil and biogenic fuels. Applied fossil fuels were the reference heavy fuel oil (HFO) and the low-sulfur marine gas oil (MGO); biogenic fuels were palm oil, soybean oil, sunflower oil, and animal fat. Greenhouse gas (GHG) emissions related to the production of biogenic fuels were treated by means of a fuel life cycle analysis which included land use changes associated with the growth of energy plants. Emissions of CO(2) and NO(x) per kWh were found to be similar for fossil fuels and biogenic fuels. PM mass emission was reduced to 10-15% of HFO emissions for all low-sulfur fuels including MGO as a fossil fuel. Black carbon emissions were reduced significantly to 13-30% of HFO. Changes in emissions were predominantly related to particulate sulfate, while differences between low-sulfur fossil fuels and low-sulfur biogenic fuels were of minor significance. GHG emissions from the biogenic fuel life cycle (FLC) depend crucially on energy plant production conditions and have the potential of shifting the overall GHG budget from positive to negative compared to fossil fuels.  相似文献   

5.
Currently, transport is highly dependent on fossil fuels and responsible for about 23% of world energy-related GHG (greenhouse gas) emissions. Ethanol from sugar cane and corn emerges as an alternative for gasoline in order to mitigate GHG emissions. Additionally, deeper offshore drilling projects such as in the Brazilian Pre-Salt reservoirs and mining projects of nonconventional sources like Tar Sands in Canada could be a solution for supplying demand of fossil fuels in the short and midterm. Based on updated literature, this paper presents an assessment of GHG emissions for four different fuels: ethanol from sugar cane and from corn and gasoline from conventional crude oil and from tar sands. An Ecological Footprint analysis is also presented, which shows that ethanol from sugar cane has the lowest GHG emissions and requires the lowest biocapacity per unit of energy produced among these fuels. Finally, an analysis using the Embodied Water concept is made with the introduction of a new concept, the "CO(2)-Water", to illustrate the impacts of releasing carbon from underground to atmosphere and of the water needed to sequestrate it over the life cycle of the assessed fuels. Using this method resulted that gasoline from fossil fuels would indirectly "require" on average as much water as ethanol from sugar cane per unit of fuel energy produced.  相似文献   

6.
The total energy and fossil fuels used in producing a desktop computer with 17-in. CRT monitor are estimated at 6400 megajoules (MJ) and 260 kg, respectively. This indicates that computer manufacturing is energy intensive: the ratio of fossil fuel use to product weight is 11, an order of magnitude larger than the factor of 1-2 for many other manufactured goods. This high energy intensity of manufacturing, combined with rapid turnover in computers, results in an annual life cycle energy burden that is surprisingly high: about 2600 MJ per year, 1.3 times that of a refrigerator. In contrast with many home appliances, life cycle energy use of a computer is dominated by production (81%) as opposed to operation (19%). Extension of usable lifespan (e.g. by reselling or upgrading) is thus a promising approach to mitigating energy impacts as well as other environmental burdens associated with manufacturing and disposal.  相似文献   

7.
New technologies, either renewables-based or not, are confronted with both economic and technical constraints. Their development takes advantage of considering the basic laws of economics and thermodynamics. With respect to the latter, the exergy concept pops up. Although its fundamentals, that is, the Second Law of Thermodynamics, were already established in the 1800s, it is only in the last years that the exergy concept has gained a more widespread interest in process analysis, typically employed to identify inefficiencies. However, exergy analysis today is implemented far beyond technical analysis; it is also employed in environmental, (thermo)economic, and even sustainability analysis of industrial systems. Because natural ecosystems are also subjected to the basic laws of thermodynamics, it is another subject of exergy analysis. After an introduction on the concept itself, this review focuses on the potential and limitations of the exergy conceptin (1) ecosystem analysis, utilized to describe maximum storage and maximum dissipation of energy flows (2); industrial system analysis: from single process analysis to complete process chain analysis (3); (thermo)economic analysis, with extended exergy accounting; and (4) environmental impact assessment throughout the whole life cycle with quantification of the resource intake and emission effects. Apart from technical system analysis, it proves that exergy as a tool in environmental impact analysis may be the most mature field of application, particularly with respect to resource and efficiency accounting, one of the major challenges in the development of sustainable technology. Far less mature is the exergy analysis of natural ecosystems and the coupling with economic analysis, where a lively debate is presently going on about the actual merits of an exergy-based approach.  相似文献   

8.
Food production and consumption is known to have significant environmental impacts. In the present work, the life cycle assessment methodology is used for the environmental assessment of an assortment of 34 fruits and vegetables of a large Swiss retailer, with the aim of providing environmental decision-support to the retailer and establishing life cycle inventories (LCI) also applicable to other case studies. The LCI includes, among others, seedling production, farm machinery use, fuels for the heating of greenhouses, irrigation, fertilizers, pesticides, storage and transport to and within Switzerland. The results show that the largest reduction of environmental impacts can be achieved by consuming seasonal fruits and vegetables, followed by reduction of transport by airplane. Sourcing fruits and vegetables locally is only a good strategy to reduce the carbon footprint if no greenhouse heating with fossil fuels is involved. The impact of water consumption depends on the location of agricultural production. For some crops a trade-off between the carbon footprint and the induced water stress is observed. The results were used by the retailer to support the purchasing decisions and improve the supply chain management.  相似文献   

9.
Carbon capture and storage (CCS) from power plants can be used to mitigate CO(2) emissions from the combustion of fossil fuels. However, CCS technologies are energy intensive, decreasing the operating efficiency of a plant and increasing its costs. Recently developed advanced exergy-based analyses can uncover the potential for improvement of complex energy conversion systems, as well as qualify and quantify plant component interactions. In this paper, an advanced exergoenvironmental analysis is used for the first time as means to evaluate an oxy-fuel power plant with CO(2) capture. The environmental impacts of each component are split into avoidable/unavoidable and endogenous/exogenous parts. In an effort to minimize the environmental impact of the plant operation, we focus on the avoidable part of the impact (which is also split into endogenous and exogenous parts) and we seek ways to decrease it. The results of the advanced exergoenvironmental analysis show that the majority of the environmental impact related to the exergy destruction of individual components is unavoidable and endogenous. Thus, the improvement potential is rather limited, and the interactions of the components are of lower importance. The environmental impact of construction of the components is found to be significantly lower than that associated with their operation; therefore, our suggestions for improvement focus on measures concerning the reduction of exergy destruction and pollutant formation.  相似文献   

10.
Renewable and low carbon fuel standards being developed at federal and state levels require an estimation of the life cycle carbon intensity (LCCI) of candidate fuels that can substitute for gasoline, such as second generation bioethanol. Estimating the LCCI of such fuels with a high degree of confidence requires the use of probabilistic methods to account for known sources of uncertainty. We construct life cycle models for the bioconversion of agricultural residue (corn stover) and energy crops (switchgrass) and explicitly examine uncertainty using Monte Carlo simulation. Using statistical methods to identify significant model variables from public data sets and Aspen Plus chemical process models,we estimate stochastic life cycle greenhouse gas (GHG) emissions for the two feedstocks combined with two promising fuel conversion technologies. The approach can be generalized to other biofuel systems. Our results show potentially high and uncertain GHG emissions for switchgrass-ethanol due to uncertain CO? flux from land use change and N?O flux from N fertilizer. However, corn stover-ethanol,with its low-in-magnitude, tight-in-spread LCCI distribution, shows considerable promise for reducing life cycle GHG emissions relative to gasoline and corn-ethanol. Coproducts are important for reducing the LCCI of all ethanol fuels we examine.  相似文献   

11.
In addition to available country or site-specific life cycle studies on Jatropha biodiesel we present a generic, location-independent life cycle assessment and provide a general but in-depth analysis of the environmental performance of Jatropha biodiesel for transportation. Additionally, we assess the influence of changes in byproduct use and production chain. In our assessments, we went beyond the impact on energy requirement and global warming by including impacts on ozone layer and terrestrial acidification and eutrophication. The basic Jatropha biodiesel system consumes eight times less nonrenewable energy than conventional diesel and reduces greenhouse gas emissions by 51%. This result coincides with the lower limit of the range of reduction percentages available in literature for this system and for other liquid biofuels. The impact on the ozone layer is also lower than that provoked by fossil diesel, although eutrophication and acidification increase eight times. This study investigates the general impact trends of the Jatropha system, although not considering land-use change. The results are useful as a benchmark against which other biodiesel systems can be evaluated, to calculate repayment times for land-use change induced carbon loss or as guideline with default values for assessing the environmental performance of specific variants of the system.  相似文献   

12.
Cement production is an environmentally relevant process responsible for 5% of total anthropogenic carbon dioxide emissions and 7% of industrial fuel use. In this study, life cycle assessment is used to evaluate improvement potentials in the cement production process in Europe and the USA. With a current fuel substitution rate of 18% in Europe and 11% in the USA, both regions have a substantial potential to reduce greenhouse gas emissions and save virgin resources by further increasing the coprocessing of waste fuels. Upgrading production technology would be particularly effective in the USA where many kiln systems with very low energy efficiency are still in operation. Using best available technology and a thermal substitution rate of 50% for fuels, greenhouse gas emissions could be reduced by 9% for Europe and 18% for the USA per tonne of cement. Since clinker production is the dominant pollution producing step in cement production, the substitution of clinker with mineral components such as ground granulated blast furnace slag or fly ash is an efficient measure to reduce the environmental impact. Blended cements exhibit substantially lower environmental footprints than Portland cement, even if the substitutes feature lower grindability and require additional drying and large transport distances. The highest savings in CO(2) emissions and resource consumption are achieved with a combination of measures in clinker production and cement blending.  相似文献   

13.
Animal byproducts (ABP) are unavoidable byproduct of meat production that are categorized under EU legislation into category 1, 2, and 3 materials, which are normally treated by rendering. Rendering is a thermal process that produces rendered fat and protein. Heat is provided from the combustion of natural gas and self-produced rendered fat. The main objectives of the study were (i) to assess energy intensity in the UK rendering industry, and (ii) to quantify the greenhouse gas emissions associated with the production of mammalian rendered products using life cycle assessment. Thermal energy requirements were 2646 and 1357 kJ/kg, whereas electricity requirements were 260 and 375 kJ/kg for category 1 and 3 ABP respectively. Fossil CO(2) emissions were -0.77 and 0.15 kg CO(2)e/kg category 1 and 3 mammalian rendered fat respectively and 0.15 kg CO(2)e/kg processed animal protein. These were low relative to vegetable products such as palm oil and soya bean meal because (i) ABP were considered wastes that do not incur the environmental burden of their production, and (ii) the rendering process produces biofuels that can be used to generate energy that can be used to offset the use of fossil fuels in other systems.  相似文献   

14.
15.
Environmental implications of municipal solid waste-derived ethanol   总被引:1,自引:0,他引:1  
We model a municipal solid waste (MSW)-to-ethanol facility that employs dilute acid hydrolysis and gravity pressure vessel technology and estimate life cycle energy use and air emissions. We compare our results, assuming the ethanol is utilized as E85 (blended with 15% gasoline) in a light-duty vehicle, with extant life cycle assessments of gasoline, corn-ethanol, and energy crop-cellulosic-ethanol fueled vehicles. We also compare MSW-ethanol production, as a waste management alternative, with landfilling with gas recovery options. We find that the life cycle total energy use per vehicle mile traveled for MSW-ethanol is less than that of corn-ethanol and cellulosic-ethanol; and energy use from petroleum sources for MSW-ethanol is lower than for the other fuels. MSW-ethanol use in vehicles reduces net greenhouse gas (GHG) emissions by 65% compared to gasoline, and by 58% when compared to corn-ethanol. Relative GHG performance with respect to cellulosic ethanol depends on whether MSW classification is included or not. Converting MSW to ethanol will result in net fossil energy savings of 397-1830 MJ/MT MSW compared to net fossil energy consumption of 177-577 MJ/MT MSW for landfilling. However, landfilling with LFG recovery either for flaring or for electricity production results in greater reductions in GHG emissions compared to MSW-to-ethanol conversion.  相似文献   

16.
Every year, the residues generated by the disposal of packaging materials produced from fossil fuels have been growing, denoting a major environmental problem that can be mitigated by the development of biodegradable materials from natural polymers, particularly edible films. This work aimed at the development of pectin films added by cupuassu puree and chitosan nanoparticles and to evaluate the improvement of the physical–mechanical performance of the composite films. The nanostructures displayed an average size of 110 nm and a zeta potential of approximately +40 mV. The films were produced by casting, and they exhibited manageability, homogeneity, and continuity. Based upon the mechanical analysis of maximum stress and elongation, it was concluded that the nanoparticles functioned as fillers, increasing the toughness of the pectin films. Water vapor permeability assays demonstrated that the nanostructured films containing cupuassu exhibited improved barrier properties. The glass transition temperature of the films was not strongly affected by the addition of nanoparticles. Conversely, the initial degradation temperature decreased with the addition of nanoparticles and cupuassu puree. The outcomes of this research pave a new route for the development of nonconventional food packaging materials.  相似文献   

17.
Comprehensive life cycle assessments show that current transport biofuels often do worse than conventional fossil transport fuels as to the emission of greenhouse gases. Biofuels from microalgae grown with present technology and lignocellulosic biofuels from current arable land or land that is to be deforested are unlikely to do better regarding the emission of greenhouse gases than fossil transport fuels. When crops characterized by relatively low fossil fuel inputs and relatively high biomass yields are grown on abandoned agricultural and marginal soils which currently sequester little carbon, cropping for transport biofuels may help in limiting climate change without an impact on food prices. For such cropping one probably has to go beyond the market mechanism. Worldwide, there is some scope for the use of harvest residues in biofuel production. However, European arable soils show on average large losses of soil carbon and this rather favors increased addition of such residues to soils. Received: November 17, 2008; accepted: December 3, 2008  相似文献   

18.
Polyhydroxyalkanoates (PHA) are promising eco-friendly bioplastics that can be produced from cellulosic ethanol biorefineries as value-added coproducts. A cradle-to-factory-gate life cycle assessment is performed with two important categories: the greenhouse gas (GHG)emissions and fossil energy requirement per kg of bioplastics produced. The analysis indicates that PHA bioplastics contribute clearly to the goal of mitigating GHG emissions with only 0.49 kg CO(2-e) being emitted from production of 1 kg of resin. Compared with 2-3 kg CO(2-e) of petrochemical counterparts, it is about 80% reduction of the global warming potential. The fossil energy requirement per kg of bioplastics is 44 MJ, lowerthan those of petrochemical counterparts (78-88 MJ/kg resin). About 62% of fossil energy is used for processing utilities and wastewater treatment, and the rest is required for raw materials in different life cycle stages.  相似文献   

19.
Ionic liquids (ILs) have been claimed as "greener" replacements to molecular solvents. However, the environmental impacts of the life cycle phases and comparison with alternative methods have not been studied. Such a life cycle assessment (LCA) is essential before any legitimate claims of "greenness" can be made and is the subject of this paper. The model IL selected is 1-butyl-3-methyl-imidazolium tetrafluoroborate ([Bmim][BF4]) and its use as a solvent for the manufacture of cyclohexane and in a Diels-Alder reaction was assessed. These uses are compared with more conventional synthesis methods. The results indicate that processes that use IL are highly likely to have a larger life cycle environmental impact than more conventional methods. Sensitivity analysis shows that the result is robust to errors and variation in the data. For cyclohexane synthesis, the industrial gas phase process is the greenest, but the three solvents compared for the Diels-Alder reaction showed comparable life cycle impact. Although ILs are not the most attractive alternatives, the result may change if their separation efficiency, stability and recyclability are improved. Because there are many kinds of ILs, with many applications, two examples are not enough to reach any general conclusions about the greenness of all ILs. However, the life cycle data and approach of this study can be used for evaluating the greenness of more kinds of solvents, processes, and emerging technologies.  相似文献   

20.
Concern has been voiced in recent years regarding the environmental implications of the Antarctic krill fishery. Attention has focused primarily on ecological concerns, whereas other environmental aspects, including potentially globally problematic emissions and material and energy demands, have not been examined in detail. Here we apply life cycle assessment to measure the contributions of krill meal, oil, and omega-3 capsules to global warming, ozone depletion, acidification, eutrophication, energy use, and biotic resource use. Supply chains of one krill fishing and processing company, Aker BioMarine of Norway, were assessed. Impacts of krill products were found to be driven primarily by the combustion of fossil fuels onboard the fishing vessel and a transport/resupply vessel. Approximately 190 L of fuel are burned per tonne of raw krill landed, markedly higher than fuel inputs to reduction fisheries targeting other species. In contrast, the biotic resource use associated with extracting krill is relatively low compared to that of other reduction fisheries. Results of this study provide insight into the broader environmental implications of the krill fishery, comparisons between products derived from krill and other species targeted for reduction, opportunities for improving the fishery's performance, and a baseline against which to measure future performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号