首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mode I stress intensity factor KI can be computed by integration of a function representing a stress profile (e.g., variation of stress with depth), modified by an appropriate weight function. Usually, numerical integration is required. However, widely used weight functions cause the end (s) of integration intervals to be singular points, complicating numerical integration. Approaches for computing KI that deal with singularities by approximating stress profiles by a linear function near a singular point, or transforming a weight function to a form that enables Gauss–Chebyshev integration, are reviewed. As an alternative to those approaches, this study presents a different method for numerical integration involving weight functions. First, a general, variable transformation method to eliminate singularities is introduced. Elimination of singular point enables elementary integration approaches such as Simpson’s rule, as well more involved methods, such as adaptive-Lobatto integration, to be applied. Benchmark tests using a variety of numerical integration formulas show the singular point elimination method to provide accurate, robust and computationally efficient integrations.  相似文献   

2.
The consistency condition for the nodal derivatives in traditional meshfree Galerkin methods is only the differentiation of the approximation consistency (DAC). One missing part is the consistency between a nodal shape function and its derivatives in terms of the divergence theorem in numerical forms. In this paper, a consistency framework for the meshfree nodal derivatives including the DAC and the discrete divergence consistency (DDC) is proposed. The summation of the linear DDC over the whole computational domain leads to the so‐called integration constraint in the literature. A three‐point integration scheme using background triangle elements is developed, in which the corrected derivatives are computed by the satisfaction of the quadratic DDC. We prove that such smoothed derivatives also meet the quadratic DAC, and therefore, the proposed scheme possesses the quadratic consistency that leads to its name QC3. Numerical results show that QC3 is the only method that can pass both the linear and the quadratic patch tests and achieves the best performances for all the four examples in terms of stability, convergence, accuracy, and efficiency among all the tested methods. Particularly, it shows a huge improvement for the existing linearly consistent one‐point integration method in some examples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Lee  Haekwan  Tanaka  Hideo 《Behaviormetrika》1998,25(1):65-80

In this paper, we propose fuzzy regression analysis based on a quadratic programming approach. In fuzzy regression analysis, a quadratic programming approach gives more diverse spread coefficients than a linear programming approach. Moreover, a quadratic programming approach can integrate the central tendency of least squares and the possibilistic properties of fuzzy regression. Due to the characteristic of the quadratic programming problem, the proposed approach can obtain the optimal regression model representing possibilistic properties with the central tendency. In this approach, we classify the given data into two groups, i.e., the center-located group and the remaining group. Then, the upper and the lower approximation models can be obtained based on the classification result. By changing the weight coefficients of the objective function in the quadratic programming problem, we can analyze the given data in various angles.

  相似文献   

4.
The paper introduces four kinds of compact, simple to implement Gaussian cubature formulae for approximating the domain integrals arising in the discrete local weak form (DLWF) of a governing partial differential equation solved by means of the meshless local Petrov–Galerkin method of type MLPG1. The integral weight functions are fixed to be the quartic‐spline weight function of the moving least squares (MLS) method and the function's gradient. The integration domain is a circle in 2D or a sphere in 3D. The fact that the DLWF test functions are directly incorporated into the formulae increases both their exactness degree and their computational efficiency. A number of numerical tests are carried out in order to asses the accuracy of the cubature formulae. For integrands involving MLS shape functions, the main factor controlling the integration accuracy is found to be the accuracy of the MLS‐approximation. Only a small number of cubature points is thus required to match that accuracy without a need for domain partitioning. The recommended approach for increasing the overall accuracy is by adding more MLS nodes and taking advantage of the computationally inexpensive cubature formulae. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Robust and efficient integration of the Galerkin weak form only at the approximation nodes for second order meshfree Galerkin methods is proposed. The starting point of the method is the Hu-Washizu variational principle. The orthogonality condition between stress and strain difference is satisfied by correcting nodal derivatives. The corrected nodal derivatives are essentially linear functions which can exactly reproduce linear strain fields. With the known area moments, the stiffness matrix resulting from these corrected nodal derivatives can be exactly evaluated using only the nodes as quadrature points. The proposed method can exactly pass the quadratic patch test and therefore is named as quadratically consistent nodal integration. In contrast, the stabilized conforming nodal integration (SCNI) which prevails in the nodal integrations for meshfree Galerkin methods fails to pass the quadratic patch test. Better accuracy, convergence, efficiency and stability than SCNI are demonstrated by several elastostatic and elastodynamic examples.  相似文献   

6.
A generalized diffuse derivative approximation is combined with a point collocation scheme for solid mechanics problems. The derivatives are obtained from a local approximation so their evaluation is computationally very efficient. This meshfree point collocation method has other advantages: it does not require special treatment for essential boundary condition nor the time‐consuming integration of a weak form. Neither the connectivity of the mesh nor differentiability of the weight function is necessary. The accuracy of the solutions is exceptional and generally exceeds that of element‐free Galerkin method with linear basis. The performance and robustness are demonstrated by several numerical examples, including crack problems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
We compare here the accuracy, stability and wave propagation properties of a few Galerkin methods. The basic Galerkin methods with piecewise linear basis functions (called G1FEM here) and quadratic basis functions (called G2FEM) have been compared with the streamwise-upwind Petrov Galerkin (SUPG) method for their ability to solve wave problems. It is shown here that when the piecewise linear basis functions are replaced by quadratic polynomials, the stencils become much larger (involving five overlapping elements), with only a very small increase in spectral accuracy. It is also shown that all the three Galerkin methods have restricted ranges of wave numbers and circular frequencies over which the numerical dispersion relation matches with the physical dispersion relation — a central requirement for wave problems. The model one-dimensional convection equation is solved with a very fine uniform grid to show the above properties. With the help of discontinuous initial condition, we also investigate the Gibbs’ phenomenon for these methods.  相似文献   

8.
This paper is a contribution to strain‐life approach evaluation of thermo‐mechanically loaded structures. It takes into consideration the uncoupling of stress and damage evaluation and has the option of importing non‐linear or linear stress results from finite element analysis (FEA). The multiaxiality is considered with the signed von Mises method. In the developed Damage Calculation Program (DCP) local temperature‐stress‐strain behaviour is modelled with an operator of the Prandtl type and damage is estimated by use of the strain‐life approach and Skelton's energy criterion. Material data were obtained from standard isothermal strain‐controlled low cycle fatigue (LCF) tests, with linear parameter interpolation or piecewise cubic Hermite interpolation being used to estimate values at unmeasured temperature points. The model is shown with examples of constant temperature loading and random force‐temperature history. Additional research was done regarding the temperature dependency of the Kp used in the Neuber approximate formula for stress‐strain estimation from linear FEA results. The proposed model enables computationally fast thermo‐mechanical fatigue (TMF) damage estimations for random load and temperature histories.  相似文献   

9.
This paper presents the formulation and a partial analysis of a class of discontinuous Galerkin methods for quasistatic non‐linear elasticity problems. These methods are endowed with several salient features. The equations that define the numerical scheme are the Euler–Lagrange equations of a one‐field variational principle, a trait that provides an elegant and simple derivation of the method. In consonance with general discontinuous Galerkin formulations, it is possible within this framework to choose different numerical fluxes. Numerical evidence suggests the absence of locking at near‐incompressible conditions in the finite deformations regime when piecewise linear elements are adopted. Finally, a conceivable surprising characteristic is that, as demonstrated with numerical examples, these methods provide a given accuracy level for a comparable, and often lower, computational cost than conforming formulations. Stabilization is occasionally needed for discontinuous Galerkin methods in linear elliptic problems. In this paper we propose a sufficient condition for the stability of each linearized non‐linear elastic problem that naturally includes material and geometric parameters; the latter needed to account for buckling. We then prove that when a similar condition is satisfied by the discrete problem, the method provides stable linearized deformed configurations upon the addition of a standard stabilization term. We conclude by discussing the complexity of the implementation, and propose a computationally efficient approach that avoids looping over both elements and element faces. Several numerical examples are then presented in two and three dimensions that illustrate the performance of a selected discontinuous Galerkin method within the class. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
The equivalent Dang Van stress under Hertzian contacts is evaluated over the subsurface space using four computational approaches. The accuracy and computational efficiency of the different models is assessed. It is found that an approach consisting in finding the minimum circumscribed hypersphere to the deviatoric stress path in time gives a good trade‐off between accuracy and efficiency. It is also shown that a very computationally cheap approximation employing half the peak Tresca shear stress results in good agreements in the entire subsurface space for conditions relevant under wheel–rail contacts.  相似文献   

11.
A novel, accurate, and computationally efficient integration approach is developed to integrate small strain viscoplastic constitutive equations involving nonlinear coupled first-order ordinary differential equations. The developed integration scheme is achieved by a combination of the implicit backward Euler difference approximation and the implicit asymptotic integration. For the uniaxial loading case, the developed integration scheme produces accurate results irrespective of time steps. For the multiaxial loading case, the accuracy and computational efficiency of the developed integration scheme are better than those of either the implicit backward Euler difference approximation or the implicit asymptotic integration. The simplicity of the developed integration scheme is equivalent to that of the implicit backward Euler difference approximation since it also reduces the solution of integrated constitutive equations to the solution of a single nonlinear equation. The algorithm tangent constitutive matrix derived for the developed integration scheme is consistent with the integration algorithm and preserves the quadratic convergence of the Newton–Raphson method for global iterations.  相似文献   

12.
In welded joint, the residual stresses effect can be considered using the residual stress intensity factor (K res). In this study, K res is calculated using the analytic weight function method (WFM) and the polynomial distribution of residual stresses (σ res). The different residual stress distributions have been used analytically. It is to be emphasized that the current approach is little investigated. This is because the weight function has already been developed to calculate K for a crack that had already existed, and hence to calculate the stress distribution and stress intensity factor over the crack face. Therefore, the current approach calculates K res with σ res consideration for the crack which initiates and propagates until failure. The validity to use the proposed weight function has been shown. The results of K res have been compared with those obtained from FEM.  相似文献   

13.
This paper presents a new and alternative univariate method for predicting component reliability of mechanical systems subject to random loads, material properties, and geometry. The method involves novel function decomposition at a most probable point that facilitates the univariate approximation of a general multivariate function in the rotated Gaussian space and one-dimensional integrations for calculating the failure probability. Based on linear and quadratic approximations of the univariate component function in the direction of the most probable point, two mathematical expressions of the failure probability have been derived. In both expressions, the proposed effort in evaluating the failure probability involves calculating conditional responses at a selected input determined by sample points and Gauss–Hermite integration points. Numerical results indicate that the proposed method provides accurate and computationally efficient estimates of the probability of failure.  相似文献   

14.
A flexible computational procedure for solving 3D linear elastic structural mechanics problems is presented that currently uses three forms of approximation function (natural neighbour, moving least squares—using a new nearest neighbour weight function—and Lagrange polynomial) and three types of integration grids to reproduce the natural element method and the finite element method. The addition of more approximation functions, which is not difficult given the structure of the code, will allow reproduction of other popular meshless methods. Results are presented that demonstrate the ability of the first‐order meshless approximations to capture solutions more accurately than first‐order finite elements. Also, the quality of integration for the three types of integration grids is compared. The concept of a region is introduced, which allows the splitting of a domain into different sections, each with its own type of approximation function and spatial integration scheme. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
In terms of the three-field formulation of Biot's dynamic consolidation theory, the numerical manifold method (NMM) is developed, where the same approximation to skeleton displacement ( u ) and fluid velocity ( w ) is employed and able to reflect incompressible as well as compressible deformation, but the approximation to pore pressure (p ) takes two different types, respectively. The first type of approximation to p is continuous piecewise linear interpolation and the second type assumes that p is a constant within each element. It is verified that using the second type of approximation to p naturally satisfies the inf-sup condition even in the limits of rigid skeleton and very low permeability, avoiding the locking problem accordingly. Energy components done by various forces are calculated to verify the accuracy and stability of the time integration scheme. A mass lumping technique in the NMM framework is employed to effectively reduce the unphysical oscillations and increase computational efficiency, which is another unique advantage of NMM over other numerical methods. A number of numerical tests are conducted to demonstrate the robustness and versatility of the proposed mixed NMM models.  相似文献   

16.
The main feature of partition of unity methods such as the generalized or extended finite element method is their ability of utilizing a priori knowledge about the solution of a problem in the form of enrichment functions. However, analytical derivation of enrichment functions with good approximation properties is mostly limited to two-dimensional linear problems. This paper presents a procedure to numerically generate proper enrichment functions for three-dimensional problems with confined plasticity where plastic evolution is gradual. This procedure involves the solution of boundary value problems around local regions exhibiting nonlinear behavior and the enrichment of the global solution space with the local solutions through the partition of unity method framework. This approach can produce accurate nonlinear solutions with a reduced computational cost compared to standard finite element methods since computationally intensive nonlinear iterations can be performed on coarse global meshes after the creation of enrichment functions properly describing localized nonlinear behavior. Several three-dimensional nonlinear problems based on the rate-independent J 2 plasticity theory with isotropic hardening are solved using the proposed procedure to demonstrate its robustness, accuracy and computational efficiency.  相似文献   

17.
In this paper, we introduce an extension of Van Leer's slope limiter for two‐dimensional discontinuous Galerkin (DG) methods on arbitrary unstructured quadrangular or triangular grids. The aim is to construct a non‐oscillatory shock capturing DG method for the approximation of hyperbolic conservative laws without adding excessive numerical dispersion. Unlike some splitting techniques that are limited to linear approximations on rectangular grids, in this work, the solution is approximated by means of piecewise quadratic functions. The main idea of this new reconstructing and limiting technique follows a well‐known approach where local maximum principle regions are defined by enforcing some constraints on the reconstruction of the solution. Numerical comparisons with some existing slope limiters on structured as well as on unstructured meshes show a superior accuracy of our proposed slope limiters. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
A quadratic assignment problem (QAP), which is a combinatorial optimisation problem, is developed to model the problem of locating facilities with material flows between them. The aim of solving the QAP formulation for a facility layout problem (FLP) is to increase a system’s operating efficiency by reducing material handling costs, which can be measured by interdepartmental distances and flows. The QAP-formulated FLP can be viewed as a discrete optimisation problem, where the quadratic objective function is optimised with respect to discrete decision variables subject to linear equality constraints. The conventional approach for solving this discrete optimisation problem is to use the linearisation of the quadratic objective function whereby additional discrete variables and constraints are introduced. The adoption of the linearisation process can result in a significantly increased number of variables and constraints; solving the resulting problem can therefore be challenging. In this paper, a new approach is introduced to solve this discrete optimisation problem. First, the discrete optimisation problem is transformed into an equivalent nonlinear optimisation problem involving only continuous decision variables by introducing quadratic inequality constraints. The number of variables, however, remains the same as the original problem. Then, an exact penalty function method is applied to convert this transformed continuous optimisation problem into an unconstrained continuous optimisation problem. An improved backtracking search algorithm is then developed to solve the unconstrained optimisation problem. Numerical computation results demonstrate the effectiveness of the proposed new approach.  相似文献   

19.
对于半导体瞬态问题的数学模型,我们采用Lagrange型分片二次多项式空间和分片常数函数空间分别作为试探函数和检验函数空间,构造了该问题的全离散二次有限体积元格式,并进行误差分析,得到了次优阶L2模误差估计结果。  相似文献   

20.
A new method for the solution of the non‐linear equations forming the core of constitutive model integration is proposed. Specifically, the trust‐region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic‐plastic models. Although attention here is restricted to these rate‐independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non‐quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, and compared with other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared with existing algorithms. Through these efforts, it is shown that the utilization of a trust‐region approach leads to superior performance versus a traditional closest‐point projection Newton–Raphson method and comparable speed and robustness to a line search augmented scheme. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号