首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work presents a numerical investigation of crack-tip constraint for SE(T) specimens and axially surface cracked pipes using plane-strain, nonlinear computations. The primary objective is to gain some understanding of the potential applicability of constraint designed fracture specimens in defect assessments of pressurized pipelines and cylindrical vessels. The present study builds upon the J-Q approach using plane-strain solutions to characterize effects of constraint on cleavage fracture behavior for the analyzed fracture specimens and cracked pipes. Under increased loading, each cracked configuration follows a characteristic J-Q trajectory which enables comparison of the corresponding driving force curve in the present context. A key outcome of this investigation is that toughness data measured using SE(T) specimens appear more applicable for cleavage fracture predictions of pressurized pipelines and cylindrical vessels than standard, deep notch fracture specimens under bend loading. The results provide a strong support for use of constraint-designed SE(T) specimens in fracture assessments of pressurized pipes and cylindrical vessels.  相似文献   

2.
This work provides an estimation procedure to determine J-resistance curves for pin-loaded and clamped SE(T) fracture specimens using the unloading compliance technique and the η-method. A summary of the methodology upon which J and crack extension are derived sets the necessary framework to determine crack resistance data from the measured load vs. displacement curves. The extensive plane-strain analyses enable numerical estimates of the nondimensional compliance, μ, and parameters η and γ for a wide range of specimen geometries and material properties characteristic of structural and pipeline steels. Laboratory testing of an API 5L X60 steel at room temperature using pin-loaded SE(T) specimens with side-grooves provide the load-displacement data needed to validate the estimation procedure for measuring the crack growth resistance curve for the material. The results presented here produce a representative set of solutions which lend further support to develop standard test procedures for constraint-designed SE(T) specimens applicable in measurements of crack growth resistance for pipelines.  相似文献   

3.
An important failure mode of offshore pipelines is ductile fracture of the pipe wall triggered by a hypothetical welding defect. In this study, pipelines having an external part-through semi-circumferential crack of various sizes, subject to combined internal pressure and inelastic bending are considered. This is done to assess the response of pipelines during both their installation and operational conditions. Detailed 3D nonlinear finite element (FE) models of pipelines are developed. A row of elements ahead of the initial crack front are modeled using a voided plasticity material model, which enables simulation of crack growth and the subsequent fracture failure mode (denoted by the critical curvature, κcrit). After discussing the typical response characteristics of such pipelines, the FE model is used to parametrically investigate the influence of varying pipe and crack dimensions, and also the internal pressure levels, on κcrit. In the second part of this paper, the crack tip constraint ahead of a growing crack in such pipes is evaluated and systematically compared to the crack tip constraint of both the traditionally used deeply cracked Single Edge Notch Bend (SENB) specimens and the constraint-matched Single Edge Notch Tensile (SENT) specimens. This is achieved by comparing the crack resistance curves (R-curves) along with stress triaxiality and equivalent plastic strain fields evaluated ahead of a growing crack of the three systems. The results present grounds for justification of usage of SENT specimens in fracture assessment of such pipes as an alternative to the traditional overly conservative SENB specimens.  相似文献   

4.
Specimen size, crack depth and loading conditions may effect the materials fracture toughness. In order to safeguard against these geometry effects, fracture toughness testing standards prescribe the use of highly constrained deep cracked bend specimens having a sufficient size to guarantee conservative fracture toughness values. One of the more advanced testing standards, for brittle fracture, is the master curve standard ASTM E1921-97, which is based on technology developed at VTT Manufacturing Technology. When applied to a structure with low constraint geometry, the standard fracture toughness estimates may lead to strongly over-conservative estimate of structural performance. In some cases, this may lead to unnecessary repairs or even to an early “retirement” of the structure. In the case of brittle fracture, essentially three different methods to quantify constraint have been proposed, J small scale yielding correction, Q-parameter and the Tstress. Here, a relation between the Tstress and the master curve transition temperature T0 is experimentally developed and verified. As a result, a new engineering tool to assess low constraint geometries with respect to brittle fracture has been obtained.  相似文献   

5.
Extensive finite element analyses have been conducted to obtain solutions of the A-term, which is the second parameter in three-term elastic-plastic asymptotic expansion, for test specimens. Three mode I crack plane-strain test specimens, i.e. single edge cracked plate (SECP), center cracked plate (CCP) and double edge cracked plate (DECP) were studied. The crack geometries analyzed included shallow to deep cracks. Solutions of A-term were obtained for material following the Ramberg-Osgood power law with hardening exponent of n = 3, 4, 5, 7 and 10. Remote tension loading was applied which covers from small-scale to large-scale yielding. Based on the finite element results, empirical equations to predict the A-terms under small-scale yielding (SSY) to large-scale yielding conditions were developed. In addition, by using the relationships between A and other commonly used second fracture parameters such as Q factor and A2-term, the present solutions can be used to calculate parameters A2 and Q as well. The results presented in the paper are suitable to calculate the second elastic-plastic fracture parameters for test specimens for a wide range of crack geometries, material strain hardening behaviors and loading conditions.  相似文献   

6.
7.
A new methodology for predicting the location of maximum crack extension along a surface crack front in ductile materials is presented. Three-dimensional elastic-plastic finite element analyses were used to determine the variations of a constraint parameter (αh) based on the average opening stress in the crack tip plastic zone and the J-integral distributions along the crack front for many surface crack configurations. Monotonic tension and bending loads are considered. The crack front constraint parameter is combined with the J-integral to characterize fracture, the critical fracture location being the location for which the product h is a maximum. The criterion is verified with test results from surface cracked specimens.  相似文献   

8.
Extensive finite element analyses of cracked pipes with different crack sizes and orientations have been conducted to investigate effects of creep properties of materials on the unified creep constraint parameter Ac. The results show that the constraint parameter Ac is independent on Norton’s coefficient A, and it is only affected by the creep exponent n of materials. For a given crack size, with increasing n, Ac decreases and constraint level increases. The Ac of lower constraint cracks is more sensitive to n. The unified correlation equations between Ac and n have been obtained for cracked pipes with a wide range of crack sizes and constraint levels. They may be used to estimate the constraint parameter Ac at different positions along the crack fronts in cracked pipes made of materials with different n values. The two-parameter C*-Ac approach for assessing creep life of cracked pipes has also been discussed.  相似文献   

9.
The constraint effect on J–resistance curves of ductile crack growth is considered under the condition of two-parameter JQ* controlled crack growth, where Q* is a modified parameter of Q in the JQ theory. Both J and Q* are used to characterize the JR curves with J as the loading level and Q* as a constraint parameter. It is shown that Q* is independent of applied loading under large-scale yielding or fully plastic deformation, and so Q* is a proper constraint parameter during crack growth. An approach to correct constraint effects on the JR curve is developed, and a procedure of transferring the JR curves determined from standard ASTM procedure to nonstandard specimens or real cracked structures is outlined.The test data of fracture toughness, JIC, and tearing modulus, TR, by Joyce and Link (Engng. Fract. Mech. 57(4) (1997) 431) for a single-edge notched bend specimen with various depth cracks are employed to demonstrate the efficiency of the present approach. The variation of JIC and TR with the constraint parameter Q* is obtained, and then a constraint-corrected JR curve is constructed for the test material of HY80 steel. Comparisons show that the predicted JR curves can match well with the experimental data for both deep and shallow cracked specimens over a reasonably large amount of crack extension.Finally, the present approach is applied to predict the JR curves of ductile crack growth for five conventional fracture specimens. The results show that the effect of specimen geometry on the JR curves is generally much larger than the effect of specimen sizes, and larger specimens tend to have lower crack growth resistance curves.  相似文献   

10.
《Engineering Fracture Mechanics》2004,71(9-10):1325-1355
Systematic analysis of the in-plane constraint influence on J-resistance curves is presented. JR curves were also recorded and analyzed beyond the limits of crack extension inside which the stress field can be assumed to be dominated by J-integral. Three steels and four types of specimen: SEN(B), SEN(T), CCT and DENT have been tested. Along with the JR curves the fracture mechanisms have been analyzed with the help of scanning microscopy. The numerical, finite element analysis has been adopted to compute the Q-stresses, as a measure of the in-plane constraint prior to the onset of crack growth. The analysis of the stress field in front of the crack has been performed to check whether the state of stress prior to the crack growth can predetermine the way the crack will grow. It turns out that characteristic features in the JR curves runs can be predicted qualitatively from the Q(a/W) and Q(J) curves. However, there is a good correlation between Q-stress and voids diameters on fractured surfaces. Several patterns in JR curves runs have been observed for tested specimens; e.g. no influence of specimen thickness on JR curves runs was observed for side-grooved specimens. Strong influence of specimen thickness on JR curve shape was observed for non-side-grooved specimens. JR curve run higher for thinner specimens unless they are dominated by plane stress. For bent specimens JR curves run higher for shorter cracks but they run lower for specimens in tension.  相似文献   

11.
This work provides an estimation procedure to determine the J-integral and CTOD for pipes with circumferential surface cracks subjected to bending load for a wide range of crack geometries and material (hardening) based upon fully-plastic solutions. A summary of the methodology upon which J and CTOD are derived sets the necessary framework to determine nondimensional functions h1 and h2 applicable to a wide range of crack geometries and material properties characteristic of structural, pressure vessel and pipeline steels. The extensive nonlinear, 3-D numerical analyses provide a definite full set of solutions for J and CTOD which enters directly into fitness-for-service (FFS) analyses and defect assessment procedures of cracked pipes and cylinders subjected to bending load.  相似文献   

12.
Three‐dimensional (3D) finite element analyses are carried out on single‐edge bend [SE(B)] specimens for which the J‐integral resistance curves (J–R curves) have been experimentally determined to develop the constraint‐corrected J–R curves for the X80 grade pipe steel. The constraint parameters considered in this study include QHRR, QSSY, QSSY_m, QLM, QBM1, QBM2, A2, h and Tz. The constraint‐corrected J–R curves were developed on the basis of the constraint parameters obtained from finite element analysis and experimentally determined J–R curves associated with deeply cracked and medium‐cracked SE(B) specimens and validated against shallow‐cracked SE(B) specimens. The analysis results indicate that all the constraint parameters considered in this study except QHRR, QSSY, QSSY_m and QLM lead to reasonably accurate constraint‐corrected J–R curves if the crack extensions are relatively small (≤0.7 mm). For larger crack extensions (≤1.5 mm), the QBM1‐based constraint‐corrected J–R curve leads to the most accurate predictions of J among all the constraint parameters considered.  相似文献   

13.
14.
In the unloading compliance method developed for clamped single edge tension (SE(T)) specimens, six crack mouth opening displacement (CMOD)‐based compliance equations (i.e. a/W = f(BCE′)) were proposed for the crack length evaluation without clearly clarifying the corresponding predictive accuracies. In addition, the effective elastic modulus (Ee) that reflects the actual state of stress should also be introduced in the crack length evaluation for SE(T) specimens, because the actual state of stress in the remaining ligament of the test specimen is neither plane stress (E) nor plane strain (E′). In this study, two‐dimensional (2D) plane strain and three‐dimensional (3D) finite element analyses (FEAs) are carried out to investigate predictive accuracies of the six compliance equations. In both 2D and 3D FEA, specimens with a wide range of crack lengths and geometric configurations are included. For a given specimen, the value of Ee that presents the equivalent stress state in the remaining ligament is calculated on the basis of 3D FEA data. A set of formulae for the clamped SE(T) specimen is proposed that allows to evaluate Ee from the corresponding CMOD compliance. This approach is verified using numerical data. The observations of the numerical verification suggest that the use of Ee instead of E or E′ in CMOD‐based compliance equations markedly improves the accuracy of the predicted crack length for clamped SE(T) specimens.  相似文献   

15.
In this paper the J-Q two-parameter characterization of elastic-plastic crack front fields is examined for surface cracked plates under uniaxial and biaxial tensile loadings. Extensive three-dimensional elastic-plastic finite element analyses were performed for semi-elliptical surface cracks in a finite thickness plate, under remote uniaxial and biaxial tension loading conditions. Surface cracks with aspect ratios a/c = 0.2, 1.0 and relative depths a/t = 0.2, 0.6 were investigated. The loading levels cover from small-scale to large-scale yielding. In topological planes perpendicular to the crack fronts, the crack stress fields were obtained. In order to facilitate the determination of Q-factors, modified boundary layer analyses were also conducted. The J-Q two-parameter approach was then used in characterizing the elastic-plastic crack front stress fields along these 3D crack fronts. Complete distributions of the J-integral and Q-factors for a wide range of loading conditions were obtained. It is found that the J-Q characterization provides good estimate for the constraint loss for crack front stress fields. It is also shown that for medium load levels, reasonable agreements are achieved between the T-stress based Q-factors and the Q-factors obtained from finite element analysis. These results are suitable for elastic-plastic fracture mechanics analysis of surface cracked plates.  相似文献   

16.
17.
It is well known that the JQ theory can characterize the crack-tip fields and quantify constraint levels for various geometry and loading configurations in elastic–plastic materials, but it fails at bending-dominant large deformation. This drawback seriously restricts its applications to fracture constraint analysis. A modification of JQ theory is developed as a three-term solution with an additional term to address the global bending stress to offset this restriction. The nonlinear bending stress is approximately linearized in the region of interest under large-scale yielding (LSY), with the linearization factor determined using a two-point matching method at each loading for a specific cracked geometry in bending. To validate the proposed solution, detailed elastic–plastic finite element analysis (FEA) is conducted under plane strain conditions for three conventional bending specimens with different crack lengths for X80 pipeline steel. These include single edge notched bend (SENB), single edge notched tension (SENT) and compact tension (CT) specimens from small-scale yielding (SSY) to LSY. Results show that the bending modified JQ solution can well match FEA results of crack-tip stress fields for all bending specimens at all deformation levels from SSY to LSY, with the modified Q being a load- and distance-independent constraint parameter under LSY. Therefore, the modified parameter Q can be effectively used to quantify crack-tip constraint for bending geometries. Its application to fracture constraint analysis is demonstrated by determining constraint corrected JR curves.  相似文献   

18.
In this paper, an experimental investigation on effect and mechanism of in-plane constraint induced by crack depth on local fracture resistance of two cracks (A508 heat-affected-zone (HAZ) crack and A508/Alloy52Mb interface crack) located at the weakest region in an Alloy52M dissimilar metal welded joint (DMWJ) between A508 ferritic steel and 316L stainless steel in nuclear power plants has been carried out. The results show that the local fracture resistance of the two cracks is sensitive to in-plane constraint. With increasing in-plane constraint (crack depth a/W), the fracture mechanism of the two cracks changes from ductile fracture through mixed ductile and brittle fracture to brittle fracture, and the corresponding crack growth resistance decreases. The crack growth path in the specimens with different in-plane constraints deviates to low-strength material side, and is mainly controlled by local strength mismatch, rather than toughness mismatch. For accurate and reliable safety design and failure assessment of the DMWJ structures, it needs to consider the effects of in-plane constraint on fracture mechanism and local fracture resistance. The new safety design and failure assessment methods incorporating constraint effect need to be developed for the DMWJ structures.  相似文献   

19.
The present study addresses the use of CTOD and T-stress in fracture assessments of surface cracked shell structures. A new software is developed for this purpose, denoted LINKpipe. It is based on a combination of a quadrilateral assumed natural deviatoric strain thin shell finite element and an improved linespring finite element. Plasticity is accounted for using stress resultants. A power law hardening model is used for shell and linespring materials. A co-rotational formulation is employed to represent nonlinear geometry effects. With this, one can carry out nonlinear fracture mechanics assessments in structures that show instabilities due buckling (local/global), ovalisation and large rigid body motion. Many constraint-measuring parameters have been proposed, with the Q-parameter or the T-stress being the most popular ones. Solid finite element meshing for complex structures such as pipes containing semi-elliptical surface cracks in order to compute Q is at present not a feasible approach. However, shell structures are most conveniently meshed with shell finite elements, and the linespring finite element is a natural way of accounting for surface cracks. The T-stress is readily obtained from the linespring membrane force and bending moment along the surface crack. In this study we present a new approach to analyse cracked shell structures subjected to large geometric changes. By numerical examples it is shown how geometric instabilities and fracture compete as governing failure mode.  相似文献   

20.
Studies of cracked specimens loaded in mode I have shown that the stresses near the crack tip depend significantly on the level of constraint. The stresses can be determined near the crack tip using the HRR solution, but only for high constraint specimens. For other levels of constraint, O'Dowd and Shih's Q parameter may be used to adjust the stresses derived from the HRR solution. Only limited research has been carried out to study the effect of constraint in mode II. In this paper a mode II boundary layer formulation is used to study the effect of far field elastic stresses on the size and shape of the plastic zone around the crack tip and on the stresses inside the plastic zone. It is shown that in mode II, both positive and negative values of remote T-stress influence the tangential stress along the direction of maximum tangential stress. In the spirit of O'Dowd and Shih, a dimensionless parameter Q II is introduced to quantify the constraint for mode II specimens failing by brittle fracture. The relation between Q II and T/0 is determined for different values of the strain hardening coefficient n. To investigate the range of validity of the QT diagram for real specimens, the constraint parameter Q II is calculated directly from finite element analysis for three mode II specimens and compared with the evaluation using the QT diagram.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号