首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanoadhesives of epoxy resin are synthesized and evaluated. They are organically modified by multiwalled carbon nanotubes (MWCNT) (1% by weight) as reinforcement. Tensile tests are conducted on multiple identical unnotched and notched specimens to evaluate the overloading and fracture behavior of the nanoadhesives and are compared with the neat epoxy resin. In comparison with the neat epoxy, it is found that the 1% MWCNT reinforcement increased the ultimate and residual strength by about 29% and 56%, respectively. In comparison with the neat resin, there is a 265% increase in the fracture toughness of the MWCNT adhesive. Fracture surface analysis revealed the various mechanisms by which the MWCNT adhesives acquire their superior strength and toughness in comparison with the neat resin.  相似文献   

2.
In this paper we focus on the preparation and mechanical properties of the nanosilica-reinforced, epoxy resin Epikote 828LVEL. Epoxy composites containing two sizes of spherical silica nanoparticles, 130 nm and 30 nm, were prepared at a fixed volume fraction (VP = 0.5%). To prevent agglomeration, the silica fillers were initially pre-treated with diglycidyl ether of bisphenol A (BADGE). Due to the low content of silica fillers, their inclusion in the matrix was confirmed by the increased roughness of a fracture surface compared to the smooth surface of the neat epoxy. Raman spectroscopy was employed to obtain additional information about the crack-propagation path. The mechanical properties, characterized by a three-point bending test, revealed a 10–20% increase in the composite's modulus of elasticity with 30-nm and 130-nm silica-filler inclusions. Elongation at break, on the other hand, decreased for 5–10% in both composites compared to neat epoxy, suggesting brittle fracture behavior in silica/epoxy composites. The fracture toughness results showed a 25–30% improved toughening for both composites compared to the pure epoxy. The composite's resistance to failure in terms of the impact energy was, however, strongly dependent on the size of the silica: we observed a 30% increase for the 130-nm, and a 60% increase for the 30-nm, silica/epoxy composites, compared to the pure epoxy.  相似文献   

3.
The transverse tensile properties, interlaminar shear strength (ILSS) and mode I and mode II interlaminar fracture toughness of carbon fibre/epoxy (CF/EP) laminates with 10 wt% and 20 wt% silica nanoparticles in matrix were investigated, and the influences of silica nanoparticle on those properties of CF/EP laminates were characterized. The transverse tensile properties and mode I interlaminar fracture toughness (GIC) increased with an increase in nanosilica concentration in the matrix resins. However, ILSS and the mode II interlaminar fracture toughness (GIIC) decreased with increasing nanosilica concentration, especially for the higher nanosilica concentration (20 wt%). The reduced GIIC value is attributed to two main competing mechanisms; one is the formation of zipper-like pattern associated with matrix microcracks aligned 45° ahead of the crack tip, while the other is the shear failure of matrix. The ratio of GIIC/GIC decreased with the concentration of silica nanoparticles, comparable with similar CF/EP laminates with dispersed CNTs in matrix. Fractographic studies showed that interfacial failure between carbon fibre and epoxy resin occurred in the neat epoxy laminate, whereas a combination of interfacial failure and matrix failure occurred in the nanosilica-modified epoxy laminates, especially those with a higher nanosilica concentration (20 wt%).  相似文献   

4.
Non-stoichiometric curing effects on the fracture toughness behaviors of nanosilica particulate-reinforced epoxy composites were experimentally investigated in this study by comparing them with bending strengths to take into consideration the effect of interaction between nanoparticles and network structures in matrix resins. The matrixes were prepared by curing them with an excess mixture of diglycidyl ether of bisphenol A-type epoxy resin as the curing agent for the stoichiometric condition. The volume fractions of the silica particles with a median diameter of 240 nm were constantly 0.2 for all composites. The neat epoxy resins and the composites were cured non-stoichiometrically to change the crosslinking densities of the neat epoxy resins and the matrix resins of the composites within 2740–490 mol/m3. The fracture toughnesses and bending strengths of the composites and the neat epoxy resins strongly depended on the crosslinking densities in the resins. Although the fracture toughness decreased monotonously from that of the stoichiometrically cured resins as the crosslinking density decreased, the fracture toughnesses of composites were largest at a slightly lower crosslinking density of approximately 2490 mol/m3 from the stoichiometric condition of 2740 mol/m3. The fracture toughness and the bending strength were improved for crosslinking densities higher than 2000 mol/m3 by adding particles. At crosslinking density lower than 2000 mol/m3, the particles worked against the mechanical properties as defects in matrix resins.  相似文献   

5.
环氧树脂基体的热膨胀系数(CTE)对碳纤维增强环氧树脂层状材料的性能影响巨大,如何降低环氧树脂基体的CTE是提高碳纤维增强环氧树脂复合材料低温使用性能的关键。本研究采用聚对苯二甲酸丁二醇酯(PBT)、聚碳酸酯(PC)和聚醚酰亚胺(PEI)3种热塑性塑料改性环氧树脂,研究了这3种热塑性塑料对环氧树脂基体CTE的影响。结果表明:这3种热塑性塑料分子链中的羰基在环氧树脂固化过程中可与环氧分子侧链上的羟基形成氢键作用,从而加强了热塑性塑料与环氧树脂的界面作用;采用这3种热塑性塑料改性环氧树脂均可提高环氧树脂基体的玻璃化转变温度;相对于纯环氧树脂,PBT、PEI和PC改性的环氧树脂在玻璃化转变温度下的CTE分别降低了14.99%、17.44%和23.96%,但在玻璃化转变温度上的CTE均高于纯环氧树脂。  相似文献   

6.
Epoxy nanocomposites reinforced with recycled cellulose fibres (RCFs) and organoclay platelets (30B) have been fabricated and investigated in terms of WAXS, TEM, mechanical properties and TGA. Results indicated that mechanical properties generally increased as a result of the addition of nanoclay into the epoxy matrix. The presence of RCF significantly enhanced flexural strength, fracture toughness, impact strength and impact toughness of the composites. However, the inclusion of 1 wt.% clay into RCF/epoxy composites considerably increased the impact strength and toughness. The presence of either nanoclay or RCF accelerated the thermal degradation of neat epoxy, but at high temperature, thermal stability was enhanced with increased char residue over neat resin. The failure micromechanisms and energy dissipative processes in these nanocomposites were discussed in terms of microstructural observations.  相似文献   

7.
To investigate enhancement of matrix-dominated properties (such as interlaminar fracture toughness) of a composite laminate, two different bead-filled epoxies were used as matrices for the bead-filled epoxy/glass fibre hybrid composites. The plane strain fracture toughness of two different bead-filled epoxies have been measured using compact tension specimens. Significant increases in toughness were observed. Based on these results the interlaminar fracture toughness and fracture behaviour of hybrid composites, fabricated using bead-filled epoxy matrices, have been investigated using double cantilever beam and end notch flexure specimens for Mode I and Mode II tests, respectively. The hybrid composites based on carbon bead-filled matrix shows an increase in both G IC initiation and G IIC values as compared to a glass fibre reinforced plastic laminate with unmodified epoxy matrix. The optimum bead volume fraction for the hybrid composite is between 15% and 20%. However, the unmodified epoxy glass-fibre composite shows a higher G IC propagation value than that of hybrid composites, due to fibre bridging, which is less pronounced in the hybrids as the presence of the beads results in a matrix-rich interply region.  相似文献   

8.
An experimental study was conducted to improve the electrical conductivity of continuous carbon fibre/epoxy (CF/EP) composite laminate, with simultaneous improvement in mechanical performance, by incorporating nano-scale carbon black (CB) particles and copper chloride (CC) electrolyte into the epoxy matrix. CF/EP laminates of 65 vol.% of carbon fibres were manufactured using a vacuum-assisted resin infusion (VARI) technique. The effects of CB and the synergy of CB/CC on electrical resistivity, tensile strength and elastic modulus and fracture toughness (KIC) of the epoxy matrix were experimentally characterised, as well as the transverse tensile modulus and strength, Mode I and Mode II interlaminar fracture toughness of the CF/EP laminates. The results showed that the addition of up to 3.0 wt.% CB in the epoxy matrix, with the assistance of CC, noticeably improved the electrical conductivity of the epoxy and the CF/EP laminates, with mechanical performance also enhanced to a certain extent.  相似文献   

9.
Bisphenol A based thermoplastic polyesters are commonly used in the industry as binders, or tackifiers, to produce cost-saving preforms in Liquid Composite Moulding processes such as Vacuum Assisted Resin Transfer Moulding (VARTM). However, it is often reported that the presence of these polyesters has a detrimental effect on the mechanical properties of the resulting composite laminates. In contrast, this study shows that interlaminar toughness can be increased without negatively affecting other properties by coating the reinforcing plies with a bisphenol A based thermoplastic polyester if some precautions are taken in mind.The polyester was added to an epoxy resin in order to study its effect on the thermophysical properties and fracture toughness of the bulk epoxy. The polyester molecules acted as a plasticizer for the epoxy resin when the polyester was added in low amounts. This increased the bulk fracture toughness of the epoxy resin by 30%. Polyester modified glass/epoxy laminates were produced and tested for Mode I interlaminar fracture toughness and flexural properties. The increased toughness of the epoxy matrix led to a 60% increased Mode I interlaminar fracture toughness of the laminates, without negatively affecting flexural stiffness and strength of the laminates.  相似文献   

10.
In this work, the effects of as-produced GO and silane functionalized GO (silane-f-GO) loading and silane functionalization on the mechanical properties of epoxy composites are investigated and compared. Such silane functionalization containing epoxy ended-groups is found to effectively improve the compatibility between the silane-f-GO and the epoxy matrix. Increased storage modulus, glass transition temperature, thermal stability, tensile and flexural properties and fracture toughness of epoxy composites filled with the silane-f-GO sheets are observed compared with those of the neat epoxy and GO/epoxy composites. These findings confirm the improved dispersion and interfacial interaction in the composites arising from covalent bonds between the silane-f-GO and the epoxy matrix. Moreover, several possible fracture mechanisms, i.e. crack pinning/deflection, crack bridging, and matrix plastic deformation initiated by the debonding/delamination of GO sheets, were identified and evaluated.  相似文献   

11.
This study examined the effect of fullerene dispersion on the mechanical properties of carbon-fiber reinforced epoxy matrix composites (CFRPs). Mechanical properties such as tension, compression, open-hole compression, comparession after impact (CAI), binding, short beam shear, and interlaminar fracture toughness were evaluated for [0]8, [90]16, [45/0/?45/90]2S laminates. Tension and compression strengths increased 2–12% by dispersing 0.5% of fullerene into the matrix resin. Furthermore, interlaminar fracture toughness of the composite was improved by about 60%. It was revealed that a small amount of fullerene (0.1–1 wt.%) increased the failure strain of epoxy resin itself, thereby improving the CFRP strength.  相似文献   

12.
Epoxy resin modified with nanofillers cannot be used alone for high performance structural applications due to their low-mechanical properties. Therefore, the objective of this work is to hybridize unidirectional and quasi-isotropic glass fiber composite laminates with 1.0 wt% multi-walled carbon nanotubes (MWCNTs). Results from flexural and damping characterizations showed that the flexural strength and modulus, storage modulus, and damping ratio of MWCNT/E nanocomposite are improved by about 7% ± 1.5% compared to neat epoxy. The enhancement in the flexural strength of quasi-isotropic laminate (20.7%) is about ten times higher than that for unidirectional laminate (2.1%). The flexural moduli of the nano-hybridized laminates are reduced by about 7.5–10.8%. Accordingly, the ultimate failure strain and damping properties are evidently improved. The improvement in damping ratio in some cases is about 100%. The high correlation coefficient (0.9995) between flexural and storage moduli suggests using the dynamic nondestructive tests for evaluation the elastic properties of composites.  相似文献   

13.
Carboxyl terminated butadiene acrylonitrile (CTBN) was added to epoxy resins to improve the fracture toughness, and then two different lateral dimensions of graphene nanoplatelets (GnPs), nominally <1 μm (GnP-C750) and 5 μm (GnP-5) in diameter, were individually incorporated into the CTBN/epoxy to fabricate multi-phase composites. The study showed that GnP-5 is more favorable for enhancing the properties of CTBN/epoxy. GnPs/CTBN/epoxy ternary composites with significant toughness and thermal conductivity enhancements combined with comparable stiffness to that of the neat resin were successfully achieved by incorporating 3 wt.% GnP-5 into 10 wt.% CTBN modified epoxy resins. According to the SEM investigations, GnP-5 debonding from the matrix is suppressed due to the presence of CTBN. Nevertheless, apart from rubber cavitation and matrix shear banding, additional active toughening mechanisms induced by GnP-5, such as crack deflection, layer breakage and separation/delamination of GnP-5 layers contributed to the enhanced fracture toughness of the hybrid composites.  相似文献   

14.
Novel intercrosslinked networks of polyethersulfone modified epoxy-3,3′-bis(maleimidophenyl) phenylphosphine oxide matrix systems are developed. The polyethersulfone modification of epoxy resin is carried out by using tetramethyl ammonium hydroxide (TMAH) as a catalyst. The polyethersulfone modified epoxy systems are further modified with 4–12% 3,3′-bis(maleimidophenyl) phenylphosphine oxide and cured by using diaminodiphenylmethane. Tensile, flexural, impact properties and dynamic mechanical analysis (DMA) are carried out to assess the mechanical behaviour of the prepared neat resin castings. Mechanical studies indicate that the introduction of polyethersulfone into these epoxy resins improves the toughness without any reduction in the stress-strain values. But, the incorporation of bismaleimide (BMI) into the epoxy resin improves the stress-strain properties with a lowering of the toughness. The introduction of both polyethersulfone and bismaleimide into the epoxy resin influences the mechanical properties according to their content percentages.  相似文献   

15.
《Composites Part A》2007,38(2):449-460
The mechanical properties and fracture behavior of nanocomposites and carbon fiber composites (CFRPs) containing organoclay in the epoxy matrix have been investigated. Morphological studies using TEM and XRD revealed that the clay particles within the epoxy resin were intercalated or orderly exfoliated. The organoclay brought about a significant improvement in flexural modulus, especially in the first few wt% of loading, and the improvement of flexural modulus was at the expense of a reduction in flexural strength. The quasi-static fracture toughness increased, whereas the impact fracture toughness dropped sharply with increasing the clay content.Flexural properties of CFRPs containing organoclay modified epoxy matrix generally followed the trend similar to the epoxy nanocomposite although the variation was much smaller for the CFRPs. Both the initiation and propagation values of mode I interlaminar fracture toughness of CFRP composites increased with increasing clay concentration. In particular, the propagation fracture toughness almost doubled with 7 wt% clay loading. A strong correlation was established between the fracture toughness of organoclay-modified epoxy matrix and the CFRP composite interlaminar fracture toughness.  相似文献   

16.
The relationship between the interphase consisting of physisorbed and chemisorbed silane on glass fibres and the resultant composite Mode I delamination fracture toughness in glass fibre fabric laminate, was studied. The Mode I interlaminar fracture toughness of the laminate specimen was obtained by using a double cantilever beam (DCB) specimen. The delamination resistance of the laminate specimen finished with two silane concentrations and washed in methanol solvent, is discussed on the basis of the interlaminar fracture toughness. In order to determine the amount of physisorbed and chemisorbed silane on the glass fibre, the amount of total carbon was determined using an analysis instrument. The physisorbed silane migrated into the resin matrix and influenced the mechanical properties and interlaminar fracture of the laminate specimen. The amount of unsaturated polyester resin blended with a silane coupling agent was measured using dynamic mechanical spectroscopy, and a DCB specimen for mechanical properties and fracture toughness.  相似文献   

17.
Fracture toughness of the nano-particle reinforced epoxy composite   总被引:2,自引:0,他引:2  
Although thermoset polymers have been widely used for engineering components, adhesives and matrix for fiber-reinforced composites due to their good mechanical properties compared to those of thermoplastic polymers, they are usually brittle and vulnerable to crack. Therefore, ductile materials such as micro-sized rubber or nylon particles are added to thermoset polymers are used to increase their fracture toughness, which might decrease their strength if micro-sized particles act like defects.In this work, in order to improve the fracture toughness of epoxy adhesive, nano-particle additives such as carbon black and nanoclay were mixed with epoxy resin. The fracture toughness was measured using the single edge notched bend specimen at the room (25 °C) and cryogenic temperature (−150 °C). From the experimental results, it was found that reinforcement with nano-particles improved the fracture toughness at the room temperature, but decreased the fracture toughness at the cryogenic temperature in spite of their toughening effect.  相似文献   

18.
The present work involves the synthesis of molybdenum disulfide (MoS2) nanoparticles by annealing the precursor obtained from simple reflux method. XRD, FESEM and HRTEM confirmed the formation of 2H-MoS2 with ball shaped particles, where some of them possess coalesced dumbbell morphology. The reinforcement of polysulphide modified epoxy resin (PSER) by MoS2 with varying amounts from 0.150 to 0.200 wt% provides unique combination of the improved thermal stability, tribological and mechanical properties. XRD studies indicate interaction between the sulphur containing nanoparticles and the epoxy resin. Maximum improvements in tensile strength (440%) and toughness (534%) are observed with ball shaped MoS2 nanoparticles (0.150 wt%)/PSER composite. Also the coefficient of friction and wear resistance show improvements of 60 and 78% respectively for 0.175 wt% loading in PSER compared to the neat resin matrix. Thermal stability is found to be improved maximum by 23 degrees C, when 5% weight loss is taken as a point of comparison. Similar studies on synthetic microcrystalline MoS2 filled PSER show that improvements in all these properties are very inferior.  相似文献   

19.
This paper presents an experimental study into a new type of stitched fibre–polymer laminate that combines high interlaminar toughness with self-healing repair of delamination damage. Poly(ethylene-co-methacrylic acid) (EMAA) filaments were stitched into carbon fibre/epoxy laminate to create a three-dimensional self-healing fibre system that also provides high fracture toughness. Double cantilever beam testing revealed that the stitched EMAA fibres increased the mode I interlaminar fracture toughness (by ∼120%) of the laminate, and this reduced the amount of delamination damage that must subsequently be repaired by the self-healing stitches. The 3D stitched network was effective in delivering self-healing EMAA material extracted from the stitches into the damaged region, and this resulted in high recovery in the delamination fracture toughness (∼150% compared to the original material). The new self-healing stitching method provides high toughness which resists delamination growth while also having the functionality to repeatedly repair multiple layers of damage in epoxy matrix laminates.  相似文献   

20.
This investigation concerns about study the effect of natural fiber on high performance composite. Effect of addition microfibrillated cellulose (MFC) as natural fiber to plain woven carbon fiber reinforced plastic (CF) reinforced epoxy on mechanical and thermal properties has been investigated. CF/epoxy composites with addition 0.5, 1 and 2 wt.% of MFC were characterized by different techniques, namely tensile, DMA, fracture toughness (mode I) test and SEM. The results reveal that at 2 wt.% of MFC, initiation and propagation interlaminar fracture toughness in mode I improved significantly by 80% and 44% respectively. Although there is slight tendency to increase tensile strength and Young’s modulus with addition MFC up to 2%, it is still not significant with those low contents of MFC. With addition 2 wt.% MFC, the glass transition temperature increased by about 12 °C compared to neat CF/epoxy composite indicating better heat resistance with addition of MFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号