首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ninghai Su  Miao Liu  Feng Liu 《Nano Research》2011,4(12):1242-1247
Using molecular dynamics (MD) simulations, we have investigated the kinetics of the graphene edge folding process. The lower limit of the energy barrier is found to be ∼380 meV/? (or about 800 meV per edge atom) and ∼50 meV/? (or about 120 meV per edge atom) for folding the edges of intrinsic clean single-layer graphene (SLG) and double-layer graphene (DLG), respectively. However, the edge folding barriers can be substantially reduced by imbalanced chemical adsorption, such as of H atoms, on the two sides of graphene along the edges. Our studies indicate that thermal folding is not feasible at room temperature (RT) for clean SLG and DLG edges and is feasible at high temperature only for DLG edges, whereas chemical folding (with adsorbates) of both SLG and DLG edges can be spontaneous at RT. These findings suggest that the folded edge structures of suspended graphene observed in some experiments are possibly due to the presence of adsorbates at the edges.   相似文献   

2.
Tian J  Cao H  Wu W  Yu Q  Chen YP 《Nano letters》2011,11(9):3663-3668
We report an atomically resolved scanning tunneling microscopy investigation of the edges of graphene grains synthesized on Cu foils by chemical vapor deposition. Most of the edges are macroscopically parallel to the zigzag directions of graphene lattice. These edges have microscopic roughness that is found to also follow zigzag directions at atomic scale, displaying many ~120° turns. A prominent standing wave pattern with periodicity ~3a/4 (a being the graphene lattice constant) is observed near a rare-occurring armchair-oriented edge. Observed features of this wave pattern are consistent with the electronic intervalley backscattering predicted to occur at armchair edges but not at zigzag edges.  相似文献   

3.
Herein is reported a study of Co-assisted crystallographic etching of graphite in hydrogen environment at temperatures above 750 °C. Unlike nanoparticle etching of graphite surface that leaves trenches, the Co could fill the hexagonal or triangular etch-pits that progressively enlarge, before finally balling-up, leaving well-defined etched pits enclosed by edges oriented at 60° or 120° relative to each other. The morphology and chirality of the etched edges have been carefully studied by transmission electron microscopy and Raman analysis, the latter indicating zigzag edges. By introducing defects to the graphite using an oxygen plasma or by utilizing the edges of graphene/graphite flakes (which are considered as defects), an ability to define the position of the etched edges is demonstrated. Based on these results, graphite strips are successfully etched from the edges and graphitic ribbons are fabricated which are enclosed by purely zigzag edges. These fabricated graphitic ribbons could potentially be isolated layer-by-layer and transferred to a device substrate for further processing into graphene nanoribbon transistors.  相似文献   

4.
The strong interest in graphene has motivated the scalable production of high-quality graphene and graphene devices. As the large-scale graphene films synthesized so far are typically polycrystalline, it is important to characterize and control grain boundaries, generally believed to degrade graphene quality. Here we study single-crystal graphene grains synthesized by ambient chemical vapour deposition on polycrystalline Cu, and show how individual boundaries between coalescing grains affect graphene's electronic properties. The graphene grains show no definite epitaxial relationship with the Cu substrate, and can cross Cu grain boundaries. The edges of these grains are found to be predominantly parallel to zigzag directions. We show that grain boundaries give a significant Raman 'D' peak, impede electrical transport, and induce prominent weak localization indicative of intervalley scattering in graphene. Finally, we demonstrate an approach using pre-patterned growth seeds to control graphene nucleation, opening a route towards scalable fabrication of single-crystal graphene devices without grain boundaries.  相似文献   

5.
Despite high‐surface area carbons, e.g., graphene‐based materials, being investigated as anodes for lithium (Li)‐ion batteries, the fundamental mechanism of Li‐ion storage on such carbons is insufficiently understood. In this work, the evolution of the electrode/electrolyte interface is probed on a single‐layer graphene (SLG) film by performing Raman spectroscopy and Fourier transform infrared spectroscopy when the SLG film is electrochemically cycled as the anode in a half cell. The utilization of SLG eliminates the inevitable intercalation of Li ions in graphite or few‐layer graphene, which may have complicated the discussion in previous work. Combining the in situ studies with ex situ observations and ab initio simulations, the formation of solid electrolyte interphase and the structural evolution of SLG are discussed when the SLG is biased in an electrolyte. This study provides new insights into the understanding of Li‐ion storage on SLG and suggests how high‐surface‐area carbons could play proper roles in anodes for Li‐ion batteries.  相似文献   

6.
Graphene is an attractive material for spintronics due to theoretical predictions of long spin lifetimes arising from low spin-orbit and hyperfine couplings. In experiments, however, spin lifetimes in single-layer graphene (SLG) measured via Hanle effects are much shorter than expected theoretically. Thus, the origin of spin relaxation in SLG is a major issue for graphene spintronics. Despite extensive theoretical and experimental work addressing this question, there is still little clarity on the microscopic origin of spin relaxation. By using organic ligand-bound nanoparticles as charge reservoirs to tune the mobility between 2700 and 12?000 cm(2)/(V s), we successfully isolate the effect of charged impurity scattering on spin relaxation in SLG. Our results demonstrate that, while charged impurities can greatly affect mobility, the spin lifetimes are not affected by charged impurity scattering.  相似文献   

7.
We present atomic force microscopy and scanning Kelvin probe data obtained under ultra-high vacuum conditions from graphene exfoliated on crystalline SrTiO(3) substrates. The contact potential difference shows a monotonic increase with the number of graphene layers until after five layers of saturation is reached. By identifying the saturation value with the work function of graphite we determine the work function of single and bilayer graphene to be Φ(SLG) = 4.409 ± 0.039 eV and Φ(BLG) = 4.516 ± 0.035 eV, respectively. In agreement with the higher work function of single-layer graphene with respect to free-standing graphene, our measurements indicate an accumulation of charge carriers corresponding to a doping of the exfoliated graphene layer with electrons.  相似文献   

8.
Periodically hydrogenated graphene is predicted to form new kinds of crystalline 2D materials such as graphane, graphone, and 2D CxHy, which exhibit unique electronic properties. Controlled synthesis of periodically hydrogenated graphene is needed for fundamental research and possible electronic applications. Only small patches of such materials have been grown so far, while the experimental fabrication of large‐scale, periodically hydrogenated graphene has remained challenging. In the present work, large‐scale, periodically hydrogenated graphene is fabricated on Ru(0001). The as‐fabricated hydrogenated graphene is highly ordered, with a √3 × √3/R30° period relative to the pristine graphene. As the ratio of hydrogen and carbon is 1:3, the periodically hydrogenated graphene is named “one‐third‐hydrogenated graphene” (OTHG). The area of OTHG is up to 16 mm2. Density functional theory calculations demonstrate that the OTHG has two deformed Dirac cones along one high‐symmetry direction and a finite energy gap along the other directions at the Fermi energy, indicating strong anisotropic electrical properties. An efficient method is thus provided to produce large‐scale crystalline functionalized graphene with specially desired properties.  相似文献   

9.
Nika DL  Askerov AS  Balandin AA 《Nano letters》2012,12(6):3238-3244
We investigated the thermal conductivity K of graphene ribbons and graphite slabs as the function of their lateral dimensions. Our theoretical model considered the anharmonic three-phonon processes to the second-order and included the angle-dependent phonon scattering from the ribbon edges. It was found that the long mean free path of the long-wavelength acoustic phonons in graphene can lead to an unusual nonmonotonic dependence of the thermal conductivity on the length L of a ribbon. The effect is pronounced for the ribbons with the smooth edges (specularity parameter p > 0.5). Our results also suggest that, contrary to what was previously thought, the bulk-like three-dimensional phonons in graphite make a rather substantial contribution to its in-plane thermal conductivity. The Umklapp-limited thermal conductivity of graphite slabs scales, for L below ~30 μm, as log(L), while for larger L, the thermal conductivity approaches a finite value following the dependence K(0) - A × L(-1/2), where K(0) and A are parameters independent of the length. Our theoretical results clarify the scaling of the phonon thermal conductivity with the lateral sizes in graphene and graphite. The revealed anomalous dependence K(L) for the micrometer-size graphene ribbons can account for some of the discrepancy in reported experimental data for graphene.  相似文献   

10.
Structural coherency of graphene on Ir(111)   总被引:3,自引:0,他引:3  
Low-pressure chemical vapor deposition allows one to grow high structural quality monolayer graphene on Ir(111). Using scanning tunneling microscopy, we show that graphene prepared this way exhibits remarkably large-scale continuity of its carbon rows over terraces and step edges. The graphene layer contains only a very low density of defects. These are zero-dimensional defects, edge dislocation cores consisting of heptagon-pentagon pairs of carbon atom rings, which we relate to small-angle in-plane tilt boundaries in the graphene. We quantitatively examined the bending of graphene across Ir step edges. The corresponding radius of curvature compares to typical radii of thin single-wall carbon nanotubes.  相似文献   

11.
Graphene-based nano-objects such as nanotrenches, nanowires, nanobelts and nanoscale superstructures have been grown by surface segregation and precipitation on carbon-doped mono- and polycrystalline nickel substrates in ultrahigh vacuum. The dominant morphologies of the nano-objects were nanowire and nanosheet. Nucleation of graphene sheets occurred at surface defects such as step edges and resulted in the directional growth of nanowires. Surface analysis by scanning tunneling microscopy (STM) has clarified the structure and functionality of the novel nano-objects at atomic resolution. Nanobelts were detected consisting of bilayer graphene sheets with a nanoscale width and a length of several microns. Moiré patterns and one-dimensional reconstruction were observed on multilayer graphite terraces. As a useful functionality, application to repairable high-resolution STM probes is demonstrated.  相似文献   

12.
Abstract

Graphene-based nano-objects such as nanotrenches, nanowires, nanobelts and nanoscale superstructures have been grown by surface segregation and precipitation on carbon-doped mono- and polycrystalline nickel substrates in ultrahigh vacuum. The dominant morphologies of the nano-objects were nanowire and nanosheet. Nucleation of graphene sheets occurred at surface defects such as step edges and resulted in the directional growth of nanowires. Surface analysis by scanning tunneling microscopy (STM) has clarified the structure and functionality of the novel nano-objects at atomic resolution. Nanobelts were detected consisting of bilayer graphene sheets with a nanoscale width and a length of several microns. Moiré patterns and one-dimensional reconstruction were observed on multilayer graphite terraces. As a useful functionality, application to repairable high-resolution STM probes is demonstrated.  相似文献   

13.
Using in situ high-temperature (1395 K), ultra-high vacuum, scanning tunneling microscopy (STM), we investigated the growth of bilayer graphene on 6H-SiC(0001). From the STM images, we measured areal coverages of SiC and graphene as a function of annealing time and found that graphene grows at the expense of SiC. Graphene domains were observed to grow, at comparable rates, at (I) graphene-free SiC step edges, (II) graphene-SiC interfaces, and (III) the existing graphene domain edges. Based upon our results, we suggest that the rate-limiting step controlling bilayer graphene growth is the desorption of Si from the substrate.  相似文献   

14.
We investigate pseudogap phenomena originating from pairing fluctuations in the BCS-BEC crossover regime of a two-dimensional Fermi gas in a harmonic trap. Including pairing fluctuations within a T-matrix theory and effects of a trap within the local density approximation, we calculate the local density of states (LDOS) at the superfluid phase transition temperature T c. In the weak-coupling regime, we show that the pseudogap already appears in LDOS around the trap center. The spatial region where the pseudogap can be seen in LDOS becomes wider for a strong pairing interaction. We also discuss how the pseudogap affects the spectrum of the photoemission-type experiment developed by JILA group.  相似文献   

15.
Thrall ES  Crowther AC  Yu Z  Brus LE 《Nano letters》2012,12(3):1571-1577
Several recent studies have demonstrated the use of single and few-layer graphene as a substrate for the enhancement of Raman scattering by adsorbed molecules in a method termed graphene-enhanced Raman spectroscopy (GERS). Here we determine the resonance Raman scattering cross-section for the dye molecule rhodamine 6G (R6G) adsorbed on bilayer graphene. For the 1650 cm(-1) R6G mode, we obtain a cross-section of 5.1 × 10(-24) cm(2)·molecule(-1), a greater than 3-fold reduction from the previously reported solution value. We show that the absorption spectrum of adsorbed R6G can be measured using micro-optical contrast spectroscopy, and we find that detuning of the molecular resonance explains the decreased Raman scattering cross-section. We find no evidence for a graphene Raman enhancement process. We also study the graphene thickness dependence of the adsorbed R6G Raman signal and show that a model incorporating electromagnetic interference effects can qualitatively explain the decrease in signal with increasing graphene thickness.  相似文献   

16.
We calculate the electronic local density of states (LDOS) of DNA nucleotide bases (A,C,G,T), deposited on graphene. We observe significant base-dependent features in the LDOS in an energy range within a few electronvolts of the Fermi level. These features can serve as electronic fingerprints for the identification of individual bases in scanning tunneling spectroscopy (STS) experiments that perform image and site dependent spectroscopy on biomolecules. Thus the fingerprints of DNA-graphene hybrid structures may provide an alternative route to DNA sequencing using STS.  相似文献   

17.
A novel growth mechanism of graphene on Ni(111) has been discovered that occurs at temperatures below 460 °C. At these conditions, a surface-confined nickel-carbide phase coexists with single layer graphene. The graphene grows by in-plane transformation of the carbide along a one-dimensional phase-boundary, which is distinctively different from known growth processes on other transition metals and on Ni above 460 °C, where carbon atoms attach to "free" edges of graphene islands.  相似文献   

18.
When two identical two-dimensional periodic structures are superposed, a mismatch rotation angle between the structures generates a superlattice. This effect is commonly observed in graphite, where the rotation between graphene layers generates Moiré patterns in scanning tunneling microscopy images. Here, a study of intravalley and intervalley double-resonance Raman processes mediated by static potentials in rotationally stacked bilayer graphene is presented. The peak properties depend on the mismatch rotation angle and can be used as an optical signature for superlattices in bilayer graphene. An atomic force microscopy system is used to produce and identify specific rotationally stacked bilayer graphenes that demonstrate the validity of our model.  相似文献   

19.
Self-assembled growth and nitridation of ultrathin Al nanoclusters on a stepped sapphire (0001) surface were studied by high-resolution X-ray photoemission spectroscopy, atomic force microscopy and low-energy electron diffraction (LEED). Upon room temperature deposition, in the coverage range of ∼ 0.79 to 2.3 monolayer (ML), Al nanoclusters were uniformly nucleated over the entire surface of defect-free atomically smooth terraces as well as step edges. Subsequent nitridation at elevated temperatures by ammonia did not alter the morphology of the nanoclusters. The global morphology of the stepped sapphire (0001) surface such as terrace width, step height and facet orientation had no obvious influence on the nucleation morphology of the nanoclusters in the given Al coverage range. However, local structural defects at the joints of short facets and step edges played a noticeable role on the local morphology of the nanoclusters and subsequently the nitridation chemistry. The Al nanoclusters were uniformly nitridated from surface and downwards through the 3D structures. The LEED pattern indicated a certain degree of crystallinity on the nitridated surface at a nominal Al coverage less than 2 ML, whereas at 2.3 ML Al coverage, the nitridated surface became amorphous. Thus there is a critical coverage for good surface order.  相似文献   

20.
Abstract

The dependence of surface morphology of the SiC(0001) substrate on the rate with which it is heated up to the temperature of graphene growth was studied by three techniques: atomic force microscopy, Raman spectroscopy and Kelvin probe force microscopy. The study was carried out for the rates of substrates heating ranging from 100?°C/min to 320?°C/min. As a result, it was found out that both the width of the terraces forming on the surface of SiC substrate and the uniformity of the graphene layers covering these terraces significantly depend on the applied rate of the heating. It was also shown that the most homogeneous monolayer graphene with the minimum of double-layers inclusions is formed if the rate of SiC heating is about 250?°C/min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号