首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用Gleeble-1500D热模拟机,对AZ31B镁合金在温度为260~420℃、应变速率为0.03、0.1、1、3s-1时,应变量为70%的塑性变形行为以及热压缩后镁合金组织的变化进行了研究.分析了流变应力与应变速率和温度的关系.结果表明:该材料在420℃及应变率0.1s-1时可发生动态再结晶,也是最优的热加工工艺参数;在260℃,应变率为0.03s-1.的区域可能出现楔形裂纹;热压缩后晶粒明显得到细化,出现大量细小的等轴晶.  相似文献   

2.
AZ31镁合金热压缩变形行为分析   总被引:1,自引:0,他引:1  
在平面应变条件下研究了不同温度、不同变形速率以及不同变形程度对AZ31镁合金流变应力和组织的影响。结果表明:高温时,由于柱面滑移以及锥面滑移系也被启动,而且发生动态再结晶,导致流变应力显著减小;变形速率增加产生的加工硬化使得流变应力也增加;变形温度和变形速率对镁合金变形过程中孪晶的生成有显著的影响,低温或者是大变形速率下容易生成孪晶。  相似文献   

3.
半连续铸造AZ31B镁合金的热压缩变形行为   总被引:1,自引:0,他引:1  
针对半连续铸造的AZ31B镁合金,采用Gleeble-1500热/力模拟机在变形温度为473~723 K、应变速率为0.01~10 s-1、最大变形量为80%条件下进行热/力模拟研究;结合热变形后的显微组织,分析合金力学性能与显微组织之间的关系。结果表明:当变形温度一定时,流变应力和应变速率之间存在对数关系,并可用包含Arrheniues项的Z参数描述半连续铸造的AZ31B镁合金热压缩变形的流变应力行为;实验合金在523 K时开始发生动态回复;随着变形温度的升高和应变速率的降低,动态再结晶开始对AZ31B合金的变形行为产生明显影响,在变形温度623 K以上的各种应变速率下,AZ31B镁合金易变形。  相似文献   

4.
铸态AZ31B镁合金热压缩实验研究   总被引:2,自引:1,他引:1  
研究了铸态AZ31B镁合金在温度280~440℃和应变速率10-3~10-1s-1范围内的变形规律.结果表明:铸态AZ31B镁合金在高温下表现出较低的流变应力.其真应力-真应变曲线表现出明显的动态再结晶特征.再结晶晶粒明显细化,晶粒尺寸随着温度或Z(Zener-Hollomon常数)值的下降而增大.在低应变速率下可以得到相对均匀的变形组织.  相似文献   

5.
通过AZ31镁合金热压缩试验,采用电子背散射衍射(EBSD)技术,对不同变形条件(不同温度、应变速率和变形程度)下镁合金热变形过程中的动态再结晶行为、晶粒取向和织构的产生等现象进行研究.结果表明,变形温度越高,再结晶程度表现得越充分,晶粒组织也越均匀,而变形程度越大或应变速率越小,再结晶程度则越大.在镁合金热变形过程中...  相似文献   

6.
镁合金在热加工过程中的变形机制复杂,且容易受到材料初始工艺状态和变形条件影响,因此呈现出不同的应力应变关系。采用铸态和变形态的AZ31B作为研究对象,通过Gleeble-1500获取坯料的应力应变曲线随温度和应变率的变化关系,基于Arrhenius双曲正弦型函数构建两种不同工艺状态下镁合金的本构模型,分析初始加工状态对镁合金应力应变关系及变形机制的影响。实验结果表明:当应变速率大于0.1s-1,变形态镁合金在低温下由于变形织构及大量孪生产生而出现45°剪切断裂;在高温和低应变速率下两种工艺状态的镁合金变形机制相同,应力应变曲线基本相似;变形态镁合金的硬化指数n及变形激活能Q相比铸态镁合金更低。  相似文献   

7.
镁合金在热加工过程中的变形机制复杂,且容易受到材料初始工艺状态和变形条件影响,因此呈现出不同的应力应变关系。采用铸态和变形态的AZ31B作为研究对象,通过Gleeble-1500获取坯料的应力应变曲线随温度和应变率的变化关系,基于Arrhenius双曲正弦型函数构建2种不同工艺状态下镁合金的本构模型,分析初始加工状态对镁合金应力应变关系及变形机制的影响。结果表明:当应变速率大于0.1 s-1,变形态镁合金在低温下由于变形织构及大量孪生产生而出现45°剪切断裂;在高温和低应变速率下2种工艺状态的镁合金变形机制相同,应力应变曲线基本相似;变形态镁合金的硬化指数n及变形激活能Q相比铸态镁合金更低。  相似文献   

8.
铸态AZ31B镁合金热压缩流变应力   总被引:6,自引:4,他引:2  
在Gleeble-1500热模拟机上,对铸态AZ31B镁合金在温度280℃~440℃和应变速率0.001s-1~0.1s-1条件下,研究其流变应力行为.结果表明:铸态AZ31B镁合金在高温下表现出较低的流变应力,其真应力-应变曲线表现出明显的动态再结晶特征;可采用Zener-Hollomon参数的双曲正弦函数来描述AZ31B镁合金高温变形时的流变应力行为;获得流变应力σ解析表达式中的A、α和n值分别为7.59×109s-1、0.015MPa-1和4.91,激活能Q为141.6kJ/mol.  相似文献   

9.
根据对铸态AZ31B镁合金在温度为280~440℃、应变速率为0.001~0.1 s-1条件下进行热压缩试验,分析了变形程度、应变速率和加热温度对其流动应力的影响,结果表明,该合金热变形时的流动应力对变形温度和变形速率极为敏感,随变形温度的升高而降低,随变形速率的增加而增大.在温度为440℃,应变速率小于0.01 s-...  相似文献   

10.
单点渐进成形中通常用最大成形角来表示成形极限,对于研究尚少的热渐进成形,研究其成形极限能够对后期该材料的相关实验研究有借鉴作用。提出一种以油浴方式对AZ31B镁合金板料进行加热处理,并以此辅助的热渐进成形实验,用升高温度梯度的方式探索了合适的加工温度,并在该温度下研究不同板料厚度下的成形极限。结果表明:在介质油温度为200℃左右时,板料的加工性能良好,可以进行渐进成形实验,成形件完整且无明显缺陷;在此温度下,1 mm厚的板料成形极限为45°~47°,1.5 mm厚的板料成形极限为60°~62°。  相似文献   

11.
针对不同加工方法制备的AZ31B镁合金薄板,利用热拉伸试验机和金相显微镜对其在不同温度和变形速率下的流变应力进行了实验研究。结果表明,变形温度和变形速率对热拉伸时镁合金的流变应力有显著影响,峰值流变应力随应变速率的降低和变形温度的升高而降低。峰值流变应力随板材的厚度增加而发生变化,低温时厚度效应较为明显。退火处理对冷轧板的峰值流变应力影响较小,冷轧板可直接用于热加工成形。峰值流变应力变化规律:挤压板>热轧板>冷轧板。  相似文献   

12.
以铸态AZ31B镁合金材料为基础,采用Gleeble-1500D热变形模拟试验机对铸态AZ31镁合金在250、300、350、400℃,应变速率0.005、0.05、0.5 s-1条件下的再结晶行为进行研究,建立了热变形方程,再结晶运动学模型、晶粒尺寸模型。结果表明:在较高温度或较低应变速率下可得到较为细小的晶粒,从而对减小晶界处的孪晶位错密度,为后期轧制铸轧镁板生产过程中降低边裂产生的概率提供依据。  相似文献   

13.
利用Geeble1500热模拟实验机对双辊连续铸轧AZ31B镁板在变形温度为100℃,应变速率为10-3s-1的条件下进行单轴压缩变形,并利用金相显微镜和透射电子显微镜对其微观组织进行观察。结果表明:在上述的条件下变形时,合金中产生大量的孪晶,孪晶与孪晶之间相互交截,在孪晶界及孪晶交截区出现大量的位错,并且有动态再结晶核心及再结晶小晶粒,说明该合金中动态再结晶形核位置主要为孪晶界及孪晶-孪晶交截区。  相似文献   

14.
在变形温度为250~400℃和应变速率为0.01~10s~(-1)的条件下,采用Gleeble-1500D热模拟试验机对含稀土AZ31镁合金进行等温恒应变速率热压缩试验,获得了其真应力-应变曲线。确定了该合金在稳态应力下的Arrhenius流动应力模型参数,并基于动态材料模型理论(DMM)建立了其热加工图。结果表明,该合金的流动应力随应变速率的升高和温度的降低而增大。结合热加工图和显微组织演化分析,确定其适宜的热成形工艺区域有两个:0.03~0.8s~(-1),250~325℃和0.01~0.9s~(-1),350~400℃。  相似文献   

15.
AZ31镁合金单轴压缩中孪生行为研究   总被引:1,自引:0,他引:1  
本文采用EBSD技术研究了室温下AZ31镁合金单轴压缩实验中不均匀变形对孪生行为的影响.死区、易变形区、自由变形区处孪生分数统计结果表明,当应变小于8%时,3处孪生分数不相等,应变增加到8%时,3处孪生分数均达到90%左右,孪生基本完全,不均匀变形在低应变下对3处孪生分数影响很大,而在高应变下影响很小.对2%应变下3处孪生变体选择机制进行分析,发现80%以上开动的孪生变体都是对应第一大和第二大Schmid因子变体,表明3处孪生变体激活均满足Schmid定律.由于应力状态不同,自由变形区同时开动两个变体的晶粒百分数大于死区和易变形区.  相似文献   

16.
通过对AZ31B镁合金挤压棒料线切割(WEDM)的操作实践,试验结果表明影响镁合金线切割面质量的主要因素是钼丝进给速度、线切割电参数,即随钼丝进给速度的增大,切割表面粗糙度增加.当电压为5V,电流为2.2A时,切割面质量最好.  相似文献   

17.
对铸态AZ31B镁合金在温度280℃~440℃、应变速率0.001s-1~0.1s-1条件下进行热压缩实验,分析变形程度、应变速率和加热温度对其微观组织变化的影响,探讨合金的热压变形机制。实验结果表明,该合金热变形时发生了动态再结晶。变形温度越高、变形速率越小和变形量越大时,动态再结晶进行的越充分;变形温度越低、变形速率越大和变形量越大时,动态再结晶晶粒越细小。该合金的热变形机制是滑移孪晶联合机制。  相似文献   

18.
镁合金AZ31B板材热拉深成形工艺研究   总被引:8,自引:3,他引:8  
镁合金(AZ3lB)板材的成形性能可以通过热拉深试验来进行观察评估。成形温度选择在100-400℃之间。以获得适合成形的最佳温度范围。使用有限元方法分析了主要工艺参数对坯料成形质量的影响。试验结果表明。成形温度低于200℃时坯料很脆,高于400℃叶坯料表面易发生氧化而不适合成形。当成形温度选择在300一350℃之间。压边力在6-15kN(单位压边力q为0.7—1.7MPa)之间时镁合金具有较好的成形性能,能成功拉深出质量好的筒形件。数值模拟结果表明,坯料与模具间的摩擦因数对产生破裂的影响较压边力的影响程度大。  相似文献   

19.
通过高温拉伸试验,研究了AZ31B镁合金板材在250~450℃以及应变速率0.001 s-1、0.01 s-1条件下的高温变形行为,获得了材料的厚向异性系数、伸长率等成形性能参数及有关组织特征.结果表明,不同变形条件下AZ31B合金的真应力-真应变曲线均出现峰值,峰值应力随变形温度的升高和应变速率的降低而减小;硬化速率随变形温度的升高而降低,在温度高于250℃时变化不大.当变形温度为250 ℃,应变速率为0.001 s-1时,合金的厚向异性系数达到最大.随变形温度的升高,AZ31B镁合金的塑性显著提高.合金的动态再结晶温度为250℃,随着应变速率增大,合金发生动态再结晶的速度加快.  相似文献   

20.
对AZ31镁合金热挤压棒材在室温下沿挤压方向分别进行了应变为3%、6%、10%的单向压缩实验。利用OM、XRD和EBSD等技术研究了不同压缩应变量下的显微组织、织构及应变硬化的演变特征。结果表明:具有{0002}纤维织构的热挤压态AZ31镁合金沿着挤出方向压缩时,产生显著的应变硬化效应。其塑性变形可大致分为3个阶段:初始阶段主要发生{1012}拉伸孪生,表现为较低的应变硬化速率和应变硬化速率的急剧减小;随着压缩应变量的增加,孪晶界逐渐扩展,直至部分晶粒发生完全孪生,基面织构强度逐渐增强;拉伸孪晶生长所造成的强{0002}基面织构是产生高应变硬化速率的主要原因;应变硬化速率第Ⅱ~Ⅲ阶段的转折点大致与拉伸孪晶的生长停滞相对应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号