共查询到10条相似文献,搜索用时 15 毫秒
1.
2.
针对原有的多种群蚁群算法收敛速度慢,运行时间长,容易早熟等缺陷,提出了一种新型异类多种群蚁群算法。算法由多类不同特性蚁群构成,不同蚁群具有不同特质,且优势互补,彼此间具有潜在的合作性。不同种类蚁群搜索时,通过子蚁群间的相似度,自适应选择最互补的蚁群进行信息交换,以加强不同种类蚁群间的协作,增强解的多样性,增强跳出局部最优的能力。TSP仿真结果表明,该算法在搜索速度以及搜索质量方面都有明显的提高。 相似文献
3.
基于信息熵的异类多种群蚁群算法 总被引:1,自引:0,他引:1
提出了一种基于信息熵的异类多种群蚁群算法。算法使用多个异类种群的蚂蚁子群体同时进行优化计算,引入信息熵来表示蚂蚁种群的进化程度,根据蚂蚁子群体间的信息熵来决定子群体间的信息交流策略,包括选择信息交流的对象和调节信息交流的周期以及信息更新策略,以取得各蚂蚁子群体中解的多样性和收敛性之间的动态平衡。基于旅行商问题的实验证明,该算法具有很好的全局搜索能力、收敛速度以及解的多样性。 相似文献
4.
5.
分析了目前大规模定制(MC)供应链调度现有调度方法的不足,针对MC供应链调度具有分布式和计算规模大的特点,提出了异类多种群蚁群算法,并设计了MC分布式调度优化的模型。异类多种群蚁群算法由多类不同特性蚁群构成,不同类型蚁群具有不同特质,并优势互补,彼此间具有潜在的合作性。将多个进行寻优的异类蚁群分散到供应链的不同计算节点上多个蚁群进行协同工作,蚁群间既独立也协作,充分发挥并行高效的特点,满足大规模定制供应链调度的要求。此模型算法可根据多订单特点,充分利用供应链上分布的计算资源,对调度规模大而且复杂的供应商选择及企业间合作时序进行寻优,确定优化调度方案。实验结果证明,该算法模型具有较好的有效性、稳定性和订单适应能力。 相似文献
6.
针对云计算环境中虚拟机资源负载均衡问题,并为实现云计算下虚拟机资源负载均衡高效调度以满足用户的QoS需求,提出了一种基于多维QoS实现负载均衡的虚拟机资源调度方法。首先,在云计算环境下建立多维QoS网络环境的数学模型;然后,提出一种基于蚁群算法的优化算法,用于实现云计算环境中虚拟机资源高效调度;最后,在云仿真平台CloudSim上进行仿真实验。实验结果表明,相对于其他资源调度算法,所提算法能高效解决云计算下虚拟机资源调度问题,减少虚拟机资源负载均衡离差,具有更好的性能,能完全满足云计算下和多维QoS环境下虚拟机资源负载均衡的需求。 相似文献
7.
云数据中心的规模日益增长导致其产生的能源消耗及成本呈指数级增长.虚拟机的放置是提高云计算环境服务质量与节约成本的核心.针对传统的虚拟机放置算法存在考虑目标单一化和多目标优化难以找到最优解的问题,提出一种面向能耗、资源利用率、负载均衡的多目标优化虚拟机放置模型.通过改进蚁群算法求解优化模型,利用其信息素正反馈机制和启发式... 相似文献
8.
针对交叉路口信号控制面临的多目标优化问题,建立以延误时间、停车次数和通行能力作为性能指标的交叉路口信号配时模型,提出一种基于多种群的改进蚁群算法,对信号配时方案进行优化。改进的算法以交叉路口的平峰状态和高峰状态进行仿真。实验结果表明利用该算法对模型求解的结果优于传统方法,能降低交叉口的总延误时间和停车次数,提高了通行能力。且该算法稳定性好,求解速度快。 相似文献
9.
多目标优化的多种群混合行为二元蚁群算法 总被引:2,自引:0,他引:2
针对二元蚁群算法在求解多目标问题时难以同时得到多个解和难以得到Pareto曲面的缺陷,使用多种群策略,改善算法的全局搜索能力,引入环境评价/奖励因子和蚁群混合行为搜索机制,提出了多种群混合行为二元蚁群算法。通过对几个不同带约束多目标函数的测试,实验结果表明该算法在保证全局搜索能力的基础上,拥有很好的多目标求解能力。 相似文献
10.
物理主机工作负载的不确定性容易造成物理主机过载和资源利用率低,从而影响数据中心的能源消耗和服务质量。针对该问题,通过分析物理主机的工作负载记录与虚拟机资源请求的历史数据,提出了基于负载不确定性的虚拟机整合(WU-VMC)方法。为了稳定云数据中心各主机的工作负载,该方法首先利用虚拟机的资源请求拟合物理主机工作负载,并利用梯度下降方法计算虚拟机与物理主机的虚拟机匹配度;然后,利用匹配度进行虚拟机整合,从而解决负载不确定造成的能耗增加和服务质量下降等问题。仿真实验结果表明,WU-VMC方法降低了数据中心的能源消耗,减少了虚拟机迁移次数,提高了数据中心的资源利用率及服务质量。 相似文献