首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
TiO2 and TiO2:Fe thin films have been grown by electron beam evaporation and the influence of doping and heat treatment on their electrical and optical properties has been studied.  相似文献   

3.
Nanocrystalline thin films of TiO2 have been synthesized by sol gel spin coating technique Thin films of TiO2 annealed at 700 °C were characterized by X-ray diffraction(XRD), Atomic Force Microscopy, High resolution TEM and Scanning Electron Microscopy (SEM), The XRD shows formation of tetragonal anatase and rutile phases with lattice parameters a = 3.7837 Å and c = 9.5087 Å. The surface morphology of the TiO2 films showed that the nanoparticles are fine with an average grain size of about 60 nm. Optical studies revealed a high absorption coefficient (104 cm?1) with a direct band gap of 3.24 eV. The films are of the n type conduction with room temperature electrical conductivity of 10?6 (Ω cm)?1.  相似文献   

4.
Transparent antireflective SiO2/TiO2 double layer thin films were prepared using a sol–gel method and deposited on glass substrate by spin coating technique. Thin films were characterized using XRD, FE-SEM, AFM, UV–Vis spectroscopy and water contact angle measurements. XRD analysis reveals that the existence of pure anatase phase TiO2 crystallites in the thin films. FE-SEM analysis confirms the homogeneous dispersion of TiO2 on SiO2 layer. Water contact angle on the thin films was measured by a contact angle analyzer under UV light irradiation. The photocatalytic performance of the TiO2 and SiO2/TiO2 thin films was studied by the degradation of methylene blue under UV irradiation. The effect of an intermediate SiO2 layer on the photocatalytic performance of TiO2 thin films was examined. SiO2/TiO2 double layer thin films showed enhanced photocatalytic activity towards methylene blue dye.  相似文献   

5.
Ag2S decorated titanium oxide nanotubes (Ag2S/NTs) were prepared by electrochemical anodizing and successive ionic layer adsorption and reaction (SILAR) approach. The prepared samples were characterized by X-ray diffraction, field emission scanning electron microscopy coupled with energy dispersive X-ray analysis and diffuse reflectance spectroscopy. SEM results indicate titanium oxide nanotubes (NTs) with 90–220 nm in diameter and 15–30 nm in wall thickness were prepared by one-step anodizing method on the surface of titanium foils. Characterization of the Ag2S/NTs samples indicated that the number of SILAR cycles influenced the morphology of fabricated films. The degradation of rhodamine B was used as a model reaction to evaluate the photo catalytic activity of the obtained samples. Results showed that the photo catalytic activity of Ag2S/NTs nanocomposite samples is higher than that with bare NTs sample. The incorporation of Ag2S on NTs improves the photo catalytic activity due to the synergetic effect. Ag2S/NTs nanocomposite sample prepared by SILAR deposition with 2 cycles gives the highest degrading rate, which can be attributed to appropriate Ag2S content and high surface area of this sample. Ag2S/NTs nanocomposites are easy to be recycled and have good stability for repeated use. With the improved visible light degradation performance, Ag2S/NTs samples would be expected to be used in water purification. Since these prepared electrodes can be easily removed and replaced after the photo catalytic reaction, avoiding the filtration step after photoreaction or the immobilizing process required for photo catalyst particles, the operation in the photo-reactor becomes much easier from an engineering point of view.  相似文献   

6.
Boron doped TiO2 thin films have been successfully deposited on glass substrate and silicon wafer at 30°C from an aqueous solution of ammonium hexa-fluoro titanate and boron trifluoride by liquid phase deposition technique. The boric acid was used as an F scavenger. The resultant films were characterized by XRD, EDAX, UV and microstructures by SEM. The result shows the deposited film to be amorphous which becomes crystalline between 400 and 500°C. The EDAX and XRD data confirm the existence of boron atom in TiO2 matrix and a small peak corresponding to rutile phase was also found. Boron doped TiO2 thin films can be used as photocatalyst for the photodegradation of chlorobenzene which is a great environmental hazard. It was found that chlorobenzene undergoes degradation efficiently in presence of boron doped TiO2 thin films by exposing its aqueous solution to visible light. The photocatalytic activity increases with increase in the concentration of boron.  相似文献   

7.
Composites in the form of precipitated powders, hybrid xerogels, and SiO2 core/TiO2 shell particles have been produced via hydrolysis of precursors (alkoxides and inorganic derivatives of titanium and silicon) and have been characterized by differential thermal analysis, X-ray diffraction, adsorption measurements, and macroelectrophoresis. The results demonstrate that heat treatment of the composites leads to crystallization of the titanium-containing component and, accordingly, reduces their specific surface area. Hydrothermal treatment enables the fabrication of materials in which TiO2 nanocrystals are evenly distributed over an amorphous SiO2 matrix.  相似文献   

8.
We developed a process for preparing SiO2/TiO2 fibers by means of precursor transformation method. After mixing PCS and titanium alkoxide, continuous SiO2/TiO2 fibers were fabricated by the thermal decomposition of titanium-modified PCS (PTC) precursor. The tensile strength and diameter of SiO2/TiO2 fibers are 2.0 GPa, 13 μm, respectively. Based on X-ray diffraction (XRD), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM) measurements, the microstructure of the SiO2/TiO2 fibers is described as anatase–TiO2 nanocrystallites with the mean size of ~10 nm embedded in an amorphous silica continuous phase.  相似文献   

9.
Vanadium oxide (V2O5) mixed titanium oxide (TiO2) and zirconium oxide (ZrO2) thin films were fabricated on glass substrates (corning 2947) and on indium tin oxide (ITO) coated glass substrates by sol gel spin coating process. Their optical, structural and electrochromic properties were investigated. The results were compared with pure TiO2 and ZrO2 thin films. Mixture of V2O5 with both types of film reduces the transmittance at the higher wavelengths. The refractive index of the V2O5 mixed TiO2 and ZrO2 films increases when compared with pure TiO2 and ZrO2 films. AFM images demonstrate no significant topographical changes for V2O5 mixed TiO2 whereas for V2O5 mixed ZrO2 films a topographical change is observed. V2O5 mixed TiO2 showed slight increase in their charge capacity.  相似文献   

10.
ZnO + Zn2TiO4 thin films were obtained by the sol–gel method using precursor solutions with different Ti/Zn ratios in the 0.18–2.13 range. The films were deposited on glass substrates and annealed in an open atmosphere at 550 °C. The oxide was characterized by X-ray diffraction and photoacoustic (PA) spectroscopy. The films were constituted of polycrystalline ZnO for the lowest Ti/Zn ratio (0.18), polycrystalline Zn2TiO4 for the 0.70 and 1.0 ratios, and mixes of both oxides for the intermediate ratios (0.32 and 0.50). For the highest ratios studied (1.44 and 2.13), the films were amorphous. The energy band gap (Eg) values were determined from optical absorption spectra, measured by means of the PA technique spectra. Eg varied in the 3.15 eV (ZnO) to 3.70 eV (Zn2TiO4) range.  相似文献   

11.
In this paper, nanostructure TiO2 thin films were deposited on glass substrates by sol-gel dip coating technique. X-ray diffraction and Fourier transform infrared spectroscopy were used to determine film behaviour. The super-hydrophilicity was assessed by contact angle measurement. Photocatalytic properties of these films were evaluated by degradation of methylene blue under UV irradiation. The XRD pattern of TiO2 powder samples confirmed the presence of polycrystalline anatase phase with a crystal size of 17 nm. The results indicated that UV light irradiation had significant effect on super-hydrophilic and photocatalytic properties of TiO2 thin films.  相似文献   

12.
TiO2—methylcellulose (MC) nanocomposite films processed by the sol-gel technique were studied for phocatalytic applications. Precalcined TiO2 nanopowder was mixed with a sol and heat treated. The sol suspension was prepared by first adding titanium tetra isopropoxide (Ti(OPr)4 or TTP) to a mixture of ethanol and HCl (molar ratio TTP:HCl:EtOH:H2O = 1:1.1:10:10) and then adding a 2 wt.% solution of methylcellulose (MC). The TiO2 nanopowder was dispersed in the sol and the mixture was deposited on a microscope glass slide by spin coating. Problems of film inhomogeneity and defects which caused peeling and cracking during calcinations, because of film shrinkage, were overcome by using MC as a dispersant. Effect of MC on the structure evaluation, crystallization behavior and mechanical integrity with thermal treatment up to 500 °C are followed by SEM, XRD and scratch test. XRD Scanning electron microscopy (SEM) showed that the composite films with MC have much rougher surface than films made without MC. Composite films heat treated at approximately 500 °C have the greatest hardness values. For the composite thick film, the minimum load which caused the complete coating removal was 200 g/mm2, an indication of a strong bond to the substrate. Photocatalytic activities of the composite film were evaluated through the degradation of a model pollutant, the textile dye, Light Yellow X6G (C.I. Reactive Yellow 2) and were compared with the activity of (i) a similar composite film without MC, and (ii) a TiO2 nanopowder. The good mechanical integrity make this composite film an interesting candidate for practical catalytic applications.  相似文献   

13.
Both humans and objects can emit infrared (IR) wavelengths which generate thermal emissions that can be detected with an IR camera. Therefore, highly IR reflective materials have been the subject of interest recently, for example, in achieving IR stealth. In this work, IR reflective coatings on polyester fabric in the form of a titanium dioxide/copper/titanium dioxide (TiO2/Cu/TiO2; TCT) sandwich-like structure are fabricated by using magnetron sputtering. The coated fabric samples are then examined by using an energy dispersive X-ray detector, a scanning electron microscope and an X-ray diffractometer. The reflection of IR wavelengths which range from 8 to 14 µm of the TCT coated fabric is evaluated. The bending stiffness, and mechanical and adhesion strengths of the coated fabric samples are also investigated. The results show that the TCT sandwich-like structure on the polyester fabric sputtered for 30 min with Cu which results in a Cu film of 200 nm in thickness is observed to have the maximum reflection of IR wavelengths. The color of the TCT coated polyester fabric samples sputtered for 5, 10, 20, and 30 min with Cu is green, yellow, brown and purple, respectively. The TCT coated fabric therefore has potential applications as IR protection textiles for military purposes.  相似文献   

14.
Polycrystalline, 50- to 70-nm-thick barium strontium titanate films of composition Ba0.8Sr0.2TiO3 have been grown on single-crystal silicon substrates by rf ion-beam sputtering. We have determined their structure and composition and detected impurities at the film/substrate interface in the form of titanium silicide islands. The deposition of a 4- to 6-nm-thick TiO2 buffer layer onto Si by ion-beam sputtering before ferroelectric film growth is shown to prevent uncontrolled formation of impurities near the interface. The buffered heterostructures possess high thermal stability.  相似文献   

15.
Pt-decorated \(\hbox {TiO}_{2}\) nanotubes Pt@TiO2 are prepared only by applying a set of facile wet-chemical redox reactions to ion track-etched polycarbonate templates. First, a homogeneous layer of Pt nanoparticles is deposited onto the complex template surface by reducing potassium tetrachloroplatinate with absorbed dimethylaminoborane. Second, the template is coated with a conformal \(\hbox {TiO}_{2}\) layer, using a chemical bath deposition reaction based on titanium(III) chloride. After the removal of the template, the rutile-type \(\hbox {TiO}_{2}\) nanotubes remain decorated with Pt nanoparticles and nanoparticle-clusters on their outside. During the process, neither vacuum techniques nor external current sources or addition of heat are employed. The crystallinity, composition, and morphology of the composite nanotubes are analysed by X-ray diffraction, scanning and transmission electron microscopy as well as by energy-dispersive X-ray spectroscopy. Finally, the obtained materials are examplarily applied in the electrooxidation of ethanol and formic acid, and their performances have been evaluated. Compared to conventional carbon black-supported Pt nanoparticles, the Pt@TiO2 nanotubes show higher reaction rates. Mass activities of 2.36 \(\hbox {A}\hbox { mg}_{\rm Pt}^{-1}\hbox { cm}^{-2}\) are reached in ethanol oxidation and 7.56 \(\hbox {A}\hbox { mg}_{\rm Pt}^{-1}\hbox { cm}^{-2}\) in the formic acid oxidation. The present structures are able to exploit the synergy of Pt and \(\hbox {TiO}_{2}\) with a bifunctional mechanism to result in powerful but easy-to-fabricate catalyst structures. They represent an easily producible type of composite nanostructures which can be applied in various fields such as in catalytics and sensor technology.  相似文献   

16.
Composite solid polymeric electrolytes (CSPE) of PVA/PEG/LiClO4 and nanocomposite solid polymeric electrolytes (NSPE) of PVA/PEG/LiClO4/TiO2 films were prepared via solution casting technique using water as the solvent. TiO2 nano powder was prepared from the sulfate process and characterized by the XRD and SEM techniques. The structural interactions of the prepared films were studied by FTIR. Ionic conductivity of the prepared CSPE and NSPE films were measured using AC impedance method at a wide temperature range from 298.15 to 348.15 K in frequency range 50–100 MHz. The measured ionic conductivity results from Nyquist plot were compared with calculations results from equivalent circuit model. The temperature dependence of ionic conductivity of the prepared CSPE and NSPE films was expressed by Arrhenius model and the ionic conductivity activation energy was reported to be 0.86 and 0.89 eV respectively.  相似文献   

17.
TiO2 nanorod arrays (TiO2 NRAs) were synthesized through a hydrothermal method. Ag2S and Bi2S3 were then grown on the surface of TiO2 NRAs with successive ionic layer adsorption and reaction method. The pristine rutile TiO2 NRAs, Ag2S/TiO2, Bi2S3/TiO2, and Bi2S3/Ag2S/TiO2 electrodes were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet–visible absorption spectroscopy, and electrochemical analysis. According to photoelectrochemical (PEC) measurement, an enhanced short circuit current density was obtained for the co-sensitized TiO2 NRAs under simulated sunlight illumination, which was 10.7 times higher than that of the TiO2 NRAs. Appropriate potential positions of conduction band and valence band of Bi2S3 that match well those of rutile TiO2 NARs and Ag2S lead to the improved PEC performance. In addition, the PEC property of the co-sensitized TiO2 NRAs under visible light irradiation was also investigated and showed a dramatically enhanced photocurrent response.  相似文献   

18.
Solid-state flexible energy storage devices play a crucial role in the development of wearable electronic textiles. In this study, we fabricated flexible asymmetric two-ply yarn supercapacitors from carbon nanotube yarns and surface-oxidized titanium filament. The crystalline structure of the TiO2 surface layer can be adjusted to amorphous, anatase and rutile states by altering the annealing temperature. The titanium filament with a rutile TiO2 surface layer produced at high annealing temperature showed far superior electrochemical performance over the filaments with amorphous and anatase TiO2 surface layers. The as-prepared asymmetric two-ply yarn supercapacitors in aqueous gel electrolyte can achieve a durable operating voltage up to 1.4 V, with a maximum energy density of 11.7 Wh kg?1 and a maximum power density of 2060 W kg?1. The asymmetric two-ply yarn supercapacitors exhibited excellent flexibility and cycling stability over 1200 cycles at straight, twisted and bent states.  相似文献   

19.
An efficient visible light photocatalyst has been prepared from TiO2 nanoparticles and a partly conjugated polymer derived from polyvinyl chloride (PVC). It was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), UV–visible diffuse reflectance spectroscopy (UV–Vis DRS), Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The visible light photocatalytic activity of the as-prepared photocatalyst was evaluated by the photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation. The XPS, FT-IR, and Raman spectra show that the partly conjugated polymer derived from PVC exists on the surface of the TiO2 nanoparticles. The UV–Vis DRS, XRD, and TEM results reveal that the modification of the partly conjugated polymer can obviously improve the absorbance of the TiO2 nanoparticles in the range of visible light and hardly affect their size and crystallinity. The visible light photocatalytic activity of the as-prepared TiO2 nanocomposites is higher than that of commercial TiO2 (Degussa P25) and comparable with those of visible light photocatalysts reported in the literature. Their visible light photocatalytic stability is also good. The reasons for their excellent visible light photocatalytic activity and the major factors affecting their photocatalytic activity are discussed.  相似文献   

20.
In this work, we highlight the effect of TiO2 seed layer (SL) on the photoelectrochemical performances of CdSe/TiO2 photoanodes (PAs). TiO2 thin films were prepared by spin coating starting from a sol gel solution containing TiO2 nanopowder, then sensitized with electrodeposited CdSe nanoparticles. Structural, optical and photoelectrochemical properties of the CdSe/TiO2 PAs with and without the SL were investigated. Charge accumulation processes and charge transfer characteristics were identified by electrochemical impedance spectroscopy. The introduction of the compact TiO2 SL was found to significantly increase the electron transport. The photocurrent density produced by the CdSe/TiO2/SL PA reached 0.95 mA/cm2, about two times higher than that performed by the CdSe/TiO2 PAs. This enhancement might be attributed to a substantial decrease of the leakage current induced by a better crystallization of TiO2 thin films as well as a higher sensitizing effect of the CdSe nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号