共查询到20条相似文献,搜索用时 78 毫秒
1.
为详细研究W元素掺杂对TiAlN涂层的微结构及性能的影响,采用Ti40Al60、Ti38Al60W2和Ti36Al60W4三种靶材制备了Ti0.43Al0.57N、Ti0.42Al0.54W0.04N和Ti0.40Al0.53W0.07N三种涂层,并使用能量色散X射线光谱仪(EDX)、X射线衍射仪(XRD)、扫描电镜(SEM)、纳米压痕研究W元素掺杂对TiAlN涂层的成分、微观结构、力学性能、热稳定性和抗氧化性的影响。结果表明:三种涂层均呈面心立方结构;W的掺杂对涂层的硬度无明显影响,Ti0.43Al0.57N、Ti0.42Al0.54W0.0... 相似文献
2.
Si含量对TiAlSiN纳米复合涂层的微观结构和力学性能的影响 总被引:3,自引:0,他引:3
采用不同Si含量的TiAlSi复合靶,在Si基底片上用射频磁控溅射工艺沉积了TiAlSiN纳米复合涂层,采用X射线衍射仪(XRD)、高分辨透射电子显微镜(HRTEM)和纳米压痕技术研究了Si含量对TiAlSiN涂层的微观结构和力学性能的影响.结果表明:TiAlSiN涂层内部形成了Si3N4界面相包裹TiAlN纳米等轴晶粒的纳米复合结构.随着Si含量的增加,TiAlSiN涂层的结晶程度先增加后降低,涂层内部的晶粒尺寸先减小后趋于平稳,涂层的力学性能先升高后降低.当Si与TiAl原子比为3∶22时获得的最高硬度和弹性模量分别为37.1GPa和357.3 GPa. 相似文献
3.
涂层内氧化物和孔隙等微观缺陷是影响涂层力学性能的关键因素,采用等离子喷涂技术制备Ti N涂层,利用SEM、XRD、EDS分析喷涂参数对涂层内氧化物和孔隙率的影响,并研究氧化物和孔隙率对涂层硬度和断裂韧性的影响规律,优化等离子喷涂参数。结果表明:在较远喷涂距离和较大喷涂功率下,涂层内具有较少的氧化物和孔隙;随涂层内氧化物和孔隙增多,涂层硬度呈降低趋势;涂层内氧化物的存在可提高涂层的断裂韧性,但氧化物较多时会降低涂层层状结构内聚强度,涂层断裂韧性随氧化物增多呈现先增加后降低的变化趋势。 相似文献
4.
本文采用高能等离子喷涂方法制备了孔隙率为 14.03%~28.22% 的多孔 YSZ 涂层, 研究了喷涂工艺参数对
涂层孔隙率以及涂层基本性能的影响。 结果表明: 随孔隙率的增加, 涂层的硬度和结合强度整体呈现下降的趋势,
孔隙率 14.03% 时硬度为 92.4, 孔隙率 26.04% 时硬度降低到 84.2, 强度则由 9.62 MPa 降低到 5.03 MPa; 涂层在
1060 ℃下抗热震次数呈现先明显增加后降低的趋势, 当孔隙率为 26.04% 时, 涂层在 464 次水冷热震后保持完好,
涂层抗热震性能最优。 相似文献
5.
6.
7.
以P,B和Si等的化合物为主要组元的涂层对C/C复合材料进行表面抗氧化处理,在700,900℃时进行氧化实验,用SEM观察涂层在氧化前、后形貌的变化,用样品的失重分析成分对涂层抗氧化性能的影响。研究结果表明:浸涂次数对涂层抗氧化性能影响较大,浸涂2次的样品比只浸涂1次的样品的氧化失重低;具有最佳抗氧化效果的涂层在700℃,氧化10h时氧化失重率为0.26%,在900℃,6h时的氧化失重率不超过2%。通过SEM检测发现,涂层在氧化前与涂层具有良好的结合性,没有产生大的缺陷,涂层内低熔点物质在氧化过程中逐步偏聚、挥发导致其抗氧化能力降低。 相似文献
8.
采用常规等离子喷涂(APS)和超音速等离子喷涂(SAPS)两种工艺制备了热障涂层,研究表明:两种等离子射流中粒子表面温度相近,SAPS工艺中粒子飞行速度达到430m/s,比APS工艺(200m/s)粒子飞行速度提高1倍。由于SAPS工艺中等离子射流速度高,熔融粒子在等离子射流中产生雾化形成尺寸较小粒子,伴随粒子撞击基体的速度提高,增加了熔融粒子撞击基体能量,在基体上形成厚度薄和飞溅少的"板条",加强了"板条"与基体或"板条"与"板条"间结合,消除了APS工艺制备的热障涂层中典型层状结构,使热障涂层结合强度和抗热震性能分别提高40%和1倍。 相似文献
9.
10.
11.
Effect of rare earth addition on structure and properties of Ni-P coating on SiCp/Al composites 总被引:2,自引:0,他引:2
The aim of this work was to improve the properties of Ni-P coating on SiCp/Al composites. The effect of rare earths addition on Ni-P coating structure was investigated by means of scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffractometer (XRD) and electrochemistry methods. The results showed that as Y or La concentration was 0.15 g/L in plating solution, the highest value of deposition rate of Ni-P coating was found. And the structure of the obtained coating was modified... 相似文献
12.
设计并制备了一种工作温度不大于1373 K的C/C复合材料抗氧化复合涂层,其基本结构为浸溃过渡层,陶瓷相阻挡层/玻璃相封填层,涂覆有复合涂层的C/C复合材料试样在空气中于1173 K下氧化10 h的失重率仅为10.37%,氧化失重速率为5.67×10~(-5)g/(cm~2·min);1173 K←→室温空气中急冷急热10 h循环100次后,失重率为8.41%,涂层没有剥落,说明整个涂层具有良好的高温抗氧化性和抗热震性能,该种复合涂层可在中低温(不大于1373 K)氧化性气氛中长时间工作,适合作C/C复合材料航空刹车副等部件的抗氧化涂层,能够大大提高C/C复合材料的使用寿命和性能。 相似文献
13.
Effect of cerium addition on microstructure and mechanical properties of Al-Zn-Mg-Cu alloy 总被引:1,自引:0,他引:1
A. K. Chaubey S. Mohapatra K. Jayasankar S. K. Pradhan B. Satpati S. S. Sahay B. K. Mishra P. S. Mukherjee 《Transactions of the Indian Institute of Metals》2009,62(6):539-543
Effect of cerium addition on the microstructure and mechanical properties of an Al-Zn-Mg-Cu alloy have been investigated. In this study, aluminum alloys with up to 0.4% cerium content have been prepared by melting, metal mould casting followed by thermo-mechanical processing. The alloys were extensively characterized by optical and transmission electron microscopy, followed by mechanical property examination by tensile tests as well as nanoindentation tests. It was observed that cerium addition results in up to 5% grain refinement of the cast dendritic structure as well as up to 38% refinement of the heat treated microstructure. Transmission electron microscopy (TEM) has revealed the uniform distribution of fine GP zones and some semi coherent β(MgZn2) precipitates in the Al rich matrix. Further TEM results show that when the Ce content was changed from 0.1% to 0.4%, precipitate size increased from 5 to 50nm and the precipitate morphology changed from spherical to needle shape. Evaluation of mechanical properties through tensile and nano-indentation tests have exhibited that both Young’s modulus and tensile strength increases with Ce addition up to 0.3% and subsequently decrease. 相似文献
14.
In order to reveal the effect of Mg in low carbon microalloy steel, low carbon microalloy steel of HR60 wheel steel was smelted in vacuum induction furnace and industrial field respectively. The characteristics of typical non- metallic inclusions and microstructure of experimental steels were both compared by OM, SEM- EDS and INCA Feature with automatically scanning inclusions function. The mechanical properties of the experimental steels were also measured. The results show that alumina inclusions are modified to spinel inclusions with small size after Mg addition. Furthermore, acicular ferrite can be induced effectively by inclusions containing magnesium. The microstructures of experimental steels are changed from ??polygonal ferrite(PF) + pearlite(P)??to ??polygonal ferrite(PF) + degenerate pearlite(DP) + acicular ferrite(AF)?? and refined by Mg treatment. The strength of experimental steels is improved with Mg addition. In industrial experiments, the fatigue limit of Mg- treated steels is greater than 460MPa, while the fatigue limit of Ca- treated steels is about 450MPa. In addition, the fatigue life of Mg- treated steels is generally higher than that of Ca- treated steels under the condition that the stress is greater than the fatigue limit. In laboratory experiments, the contents of Nb and Ti are reduced while Mg content in steel is 18??10-6, the strength of the wheel steel is close to the reference steel. Therefore, the project to reducing production cost by taking advantage of the microalloy role of Mg is feasible. 相似文献
15.
《中国稀土学报(英文版)》2017,(5)
The influence of Ca addition on the as-cast microstructure, casting fluidity and mechanical properties of the Mg-4.2Zn-1.7Ce-0.5Zr(wt.%) alloy was investigated. The results showed that the as-cast alloys consisted of α-Mg matrix, Ca-contained T-phase and Mg51Zn20 phase. Addition of 0.2 wt.%–0.6 wt.% Ca led to effective grain refinement and enhanced the fluidity of the alloys. When the content of Ca was 0.2 wt.%, the alloy exhibited the finest grain size of 35.9 μm, and the filling length was increased by approximately 55.4% compared with the quaternary alloy. The improvement of the fluidity was attributed to the grain refinement, less energy dissipation and the oxidation resistance of Ce and Ca. With an increase in Ca content, the yield strength increased gradually, whereas the ultimate tensile strength and elongation showed a decreasing tendency. Moreover, the fracture surface mode was quasi-cleavage fracture. 相似文献
16.
《中国稀土学报(英文版)》2016,(6)
The microstructure and mechanical properties of AZ80 magnesium alloys with varying Nd, Gd contents were investigated. The results revealed that the as-cast microstructure of AZ80 alloy was composed of α-Mg matrix and divorced eutectic β-Mg_(17)Al_(12) phases. The fraction of Mg_(17)Al_(12) phase was reduced when 0.6 wt.% Nd was added, and new rod-shaped Al_(11)Nd_3 phase and small block-shaped Al-Nd-Mn phase appeared. With Gd addition, the Gd elements mixed with Nd to form rare earth phases. New block-shaped Al_2Gd and Al_2Nd phases which were collectively called Al_2RE phases were observed in the microstructure with more than 0.6 wt.% Gd addition. Moreover, the addition of Gd could promote the precipitation of block-shaped Al_2RE phase, and inhibit the original rod-shaped Al_(11)Nd_3 phase. The AZ80-0.6Nd-0.6Gd alloy exhibited the optimal mechanical properties among all the experimental alloys, in which the tensile strength, yield strength and elongation were 215, 145 MPa and 8.33%, respectively. 相似文献
17.
U. Ravi Kiran M. Sankaranarayana G. V. S. Nageswara Rao T. K. Nandy 《Transactions of the Indian Institute of Metals》2017,70(3):615-622
The present investigation attempts to study the microstructure and mechanical behaviour of tungsten heavy alloys with different cobalt content. Alloys with 2 and 3% cobalt were synthesized using liquid phase sintering technique. The alloys were then vacuum heat treated and finally swaged. Quantitative microstructural analyses were undertaken by determining tungsten grain size, contiguity of tungsten and volume fraction of the matrix etc. Tensile results showed that the alloy with 3% cobalt exhibited inferior properties as compared to 2% cobalt alloy. Detailed microstructural and fractographic analysis were undertaken in order to understand these trends. Work hardening analysis showed the double slope behaviour of the alloys, which could be attributed to change in deformation behaviour from single phase matrix to two phase aggregate. It was also concluded that higher cobalt alloys needed further optimization in terms of thermo-mechanical treatment in order to realize their full potential in terms of mechanical properties. 相似文献
18.
Conclusions A study was made of the phase composition of slurry-diffusion Fe-Ti-Si coatings on niobium during their formation and atmospheric oxidation. It has been established that such coatings possess excellent resistance to oxidation by air at temperatures of up to 1300°C. The coatings lose their protective qualities after the complete oxidation of their outer zones, containing titanium and iron suicides.Translated from Poroshkovaya Metallurgiya, No. 11(227), pp. 69–73, November, 1981. 相似文献
19.
Laboratory melts of microalloyed low carbon steels with an increased silicon content of about 1 % and manganese contents between 0.3 and 1.3 % were thermomechanically rolled in a laboratory two-high rolling stand to plates of about 10 mm in thickness. The influence of chemical composition and finish rolling temperature (FRT) on the ferrite-pearlite structure of the plates (tensile and Charpy impact tests) was investigated. The choice of the temperature range of finish rolling with respect to the γ/α transformation start temperature strongly influences the ferrite-pearlite structure and the mechanical properties. The most fine-grained and homogeneous ferrite-pearlite structure and the best combination of strength and toughness have been obtained with steels containing about 1 % Mn and 1 % Si rolled with a finish rolling temperature of about 850°C. 相似文献
20.
《中国稀土学报(英文版)》2017,(5)
Effects of Ce refiners on the solidification structure and the mechanical property of ferritic stainless steel were investigated, the corresponding mechanisms were also discussed. The results showed that the solidification of the ferritic stainless steel was remarkably refined with 0.011 wt.% Ce and 0.023 wt.% Ce refiners. Ce played a great role of inclusion modification and the shape and size of the inclusions were changed by adding Ce. And after adding rare earth Ce, great amounts of high-melting point rare earth Ce inclusions(Ce_2O_3 and Ce_2O_2S) were formed. The fracture mode of 434 ferritic stainless steel was typical cleavage fracture, however, the ductility and the toughness of ferritic stainless steel was remarkably enhanced with 0.011 wt.% Ce and 0.023 wt.% Ce refiner. But the solidification structure and the mechanical property of 434 ferritic stainless steel could not be improved with 0.034 wt.% Cerefiner. 相似文献