首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
高超声速飞行器热结构和热防护设计离不开对飞行器表面的气动热载荷和固体内温度的准确预测,两者之间的耦合作用对此有着重要影响.开展高超声速流场与结构温度场的耦合数值计算,流场部分求解了二维非定常全N-S方程,空间差分采用Harten-Yee的TVD格式,时间离散采用双时间步推进.固体结构传热部分求解了二维非稳态的热传导方程.通过流固交界面,流体从固体部分得到温度边界条件,固体从流体部分得到热流边界条件,从而实现流场和固体温度场的紧耦合计算.将这套算法成功应用于绕无限长圆柱的气动加热计算中,对圆柱在气动加热过程中的温度变化做了详细的分析.  相似文献   

2.
以某超声速飞行器头部壳体为研究对象,采用气动加热工程算法求解飞行器头部壳体表面热流分布情况,利用有限元分析软件,在考虑飞行器头部壳体材料热物性参数的情况下,模拟出气动加热的热量由飞行器头部壳体结构壁面向内导热不同时刻在飞行器头部壳体的温度场分布。采用工程计算和模拟仿真相结合的技术进行高速飞行器气动加热计算,融合两种方法优点,克服彼此局限性,最终得到不同飞行时刻飞行器头部的温度场分布,为飞行器的结构设计、热防护设计、材料选择以及飞行安全性评估提供参考依据。  相似文献   

3.
高超声速飞行器鼻锥的热环境和结构热分析研究   总被引:1,自引:0,他引:1  
基于典型的高超声速气动加热飞行环境,利用热流迭代修正方法对轴对称一体化结构高超声速飞行器鼻锥进行结构温度场分析.首先通过流场计算得到飞行器鼻锥的冷壁边界热流密度分布,并将其作为结构热响应有限元计算的初始边界条件.为了验证计算方法的可执行性,并为计算结果分析比较提供参考数据,首先进行只考虑导热和辐射的计算,不考虑壁面温度变化对热流影响的热流修正迭代计算.而后,针对壁面温度随时间变化,对热流密度进行修正,进行多次迭代计算模拟,用以确定高超声速飞行器鼻锥材料以及结构设计尺寸.  相似文献   

4.
气动热与热响应的耦合研究   总被引:3,自引:0,他引:3  
气动加热会导致飞行器表面温度的剧烈上升,该问题及热防护问题已成为高超声速飞行器设如何正确模拟气动加热与结构热响应的耦合一直是工程应用领域的难点.针对该问题,提出了一种新方法,采用工程算法求解流场的气动热,并与结构热响应的求解实现紧耦合.选用二维圆管模型,验证了该方法的可行性.用该方法求解具有工程背景的三维算例,既保证了计算精度又节省了计算时间.  相似文献   

5.
为准确预测高超声速飞行器翼面的热环境以利于飞行器的设计。通过数值算例验证了基于参考焓法的气动加热工程算法的可行性;提出了一种高超声速飞行器三维翼面的气动加热、辐射换热、瞬态热传导的准定常耦合求解方法,通过与非耦合的气动加热、辐射换热及瞬态热传导方法相比,指出考虑耦合求解的必要性。在飞行器典型弹道飞行条件下,该耦合求解方法考虑气动加热、辐射换热、结构热传导耦合效应,实现了高超声速三维翼面温度的准确预测,该方法可用于高超声速飞行器气动热分析及热防护设计。  相似文献   

6.
气动加热计算是高超声速再入飞行器的关键技术之一.文中用CFD方法获取边界层外的无粘数值解,代人边界层内工程方法的计算公式,获得热流密度.驻点区热流密度计算采用Fay-Riddle公式,非驻点区采用Eckert参考焓方法.通过与风洞实验和纯粹数值方法的结果相比,验证了采用边界层外无粘数值解和边界层内工程算法相结合来计算飞行器表面热流密度的可行性.  相似文献   

7.
高超声速飞行器存在典型的激波与边界层干扰,由此产生的流动分离与再附会带来严重的气动加热问题。采用雷诺平均方法对HIFiRE-1飞行器激波与边界层干扰气动热进行了数值模拟。讨论雷诺数、马赫数等来流参数和飞行器裙体张角、裙体长度等结构参数对气动热的影响,并分析其影响机理。研究结果表明:柱裙拐角处由于存在边界层分离、再附及强烈的激波干涉,导致飞行器壁面存在严重的气动热问题,控制边界层分离和流场结构能有效控制飞行器壁面热环境。改变来流参数和结构参数会对边界层分离、再附和流场结构带来较大影响,具体表现为:来流雷诺数变化时流场结构变化较小,但会大幅度影响再附热流密度;来流马赫数变化时分离激波与飞行器壁面夹角发生变化,相应的气动热有较大变化;裙体张角变化时引起分离区尺度变化,进而改变壁面热流分布;裙体长度变化时影响边界层分离、再附特性,导致壁面热流分布发生变化。  相似文献   

8.
建立一套可行的气动热、气动力、结构松耦合数值方法,利用商业软件ABAQUS二次开发接口DFLUX,编制热壁热流计算程序以考虑壁面温度的影响,分析舵面结构在气动加热环境中温度场分布及随飞行时间的变化;建立力热模型分析舵面模态和频率随气动加热的变化情况;应用商业软件ZAERO进行颤振分析,确定舵面气动弹性稳定性及颤振发生机理。  相似文献   

9.
高超声速飞行器飞行时会引起气动加热,对其进行结构动力学分析时需考虑气动热的影响.文中建立了热环境下的结构动力学分析流程.首先,基于求解三维可压缩N-S方程的CFD方法进行气动热分析;然后利用有限单元法(FEM)求解结构热传导,并得出温度场分布;最后,基于准线性结构模型进行热环境下的结构动力学分析.基于该流程,对比分析了高超声速飞行器复合材料翼面的结构动力学特性.结果表明,气动加热改变了翼面的固有振动特性.  相似文献   

10.
飞行器气动加热烧蚀工程计算   总被引:1,自引:1,他引:1  
张志豪  孙得川 《兵工学报》2015,36(10):1949-1954
高超声速飞行器设计时,为了对防热层气动热烧蚀情况及温度场进行快速预估,提出了集成气动热、材料烧蚀、瞬态温度场的耦合计算方法。通过算例对计算方法和程序进行了验证,表明该方法具有较高的效率和精度。在给定弹道条件下,实现了气动热、热防护材料烧蚀性能和弹体温度场耦合计算。通过该方法可以在高速飞行器设计阶段,快速计算出指定飞行工况下的防热材料烧蚀情况及温度场分布,为飞行器热防护层设计提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号