首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microwave dielectric properties and the microstructures of Nd(Co1/2Ti1/2)O3 (NCT) ceramics using starting powders of Nd2O3, CoO, and TiO2 prepared by the conventional solid-state route have been researched. The dielectric constant values (ɛr) saturated at 24.8–27. Quality factor ( Q × f ) values of 37 900–140 000 (at 9 GHz) and the measured τf values ranging from −45 to −48 ppm/°C can be obtained when the sintering temperatures are in the range of 1410°–1500°C. The ɛr value of 27, the Q × f value of 140 000 (at 9 GHz) and the τf value of −46 ppm/°C were obtained for NCT ceramics sintered at 1440°C for 4 h. For applications of high selective microwave ceramic resonator, filter, and antenna, NCT is proposed as a suitable material candidate.  相似文献   

2.
The microwave dielectric properties and the microstructures of Nd(Zn1/2Ti1/2)O3 (NZT) ceramics prepared by the conventional solid-state route have been studied. The prepared NZT exhibited a mixture of Zn and Ti showing 1:1 order in the B-site. The dielectric constant values (ɛr) saturated at 29.1–31.6. The quality factor ( Q × f ) values of 56 700–170 000 (at 8.5 GHz) can be obtained when the sintering temperatures are in the range of 1300°–1420°C. The temperature coefficient of resonant frequency τf was not sensitive to the sintering temperature. The ɛ r value of 31.6, the Q × f value of 170 000 (at 8.5 GHz), and the τf value of −42 ppm/°C were obtained for NZT ceramics sintering at 1330°C for 4 h. For applications of high selective microwave ceramic resonators, filters, and antennas, NZT is proposed as a suitable material candidate.  相似文献   

3.
High-dielectric-constant and low-loss ceramics in the (1− x )Nd(Zn1/2Ti1/2)O3– x SrTiO3 system have been prepared by the conventional mixed-oxide route and their microwave dielectric properties have been investigated. A two-phase system was confirmed by the X-ray diffraction patterns, the energy-dispersive X-ray spectrometer analysis, and the measured lattice parameters. Addition of SrTiO3, having a much smaller grain size in comparison with that of Nd(Zn1/2Ti1/2)O3, could effectively hold back abnormal grain growth in the Nd(Zn1/2Ti1/2)O3 matrix. Evaporation of Zn at high temperatures caused an increase in the dielectric loss of the system. The temperature coefficient of resonant frequency increases with increasing SrTiO3 content and tunes through zero at x =0.52. Specimens with x =0.52 possessed an excellent combination of microwave dielectric properties: ɛr∼54.2, Q × f ∼84 000 GHz, and τf∼0 ppm/°C. It is proposed as a suitable candidate material for today's 3G passive components and small-sized GPS patch antennas.  相似文献   

4.
The dielectric properties of the Ba (Co1/3 Nb2/3)O3–Ba(Zn1/3Nb2/3)O3 system were determined. Ba (Co1/3 Nb2/3)O3–Ba(Zn1/3Nb2/3)O3 has a complex perovskite structure, a high dielectric constant, a low dielectric loss, and a low temperature coefficient of the resonant frequency. A solid-solution ceramic with 0.7Ba (Co1/3 Nb2/3)O3·0.3 Ba(Zn1/3Nb2/3)O3 has a dielectric constant of K=33.5, Q=11000 at 6.5 GHz, and a temperature coefficient of the resonant frequency of τf=0 ppm/°C. The temperature coefficient of resonant frequency can be varied by changing the composition. The Q values of the ceramics can be increased by annealing in a nitrogen atmosphere. These ceramics can be used for resonant elements and stabilized oscillators.  相似文献   

5.
The microwave dielectric properties of CaTi1− x (Al1/2Nb1/2) x O3 solid solutions (0.3 ≤ x ≤ 0.7) have been investigated. The sintered samples had perovskite structures similar to CaTiO3. The substitution of Ti4+ by Al3+/Nb5+ improved the quality factor Q of the sintered specimens. A small addition of Li3NbO4 (about 1 wt%) was found to be very effective for lowering sintering temperature of ceramics from 1450–1500° to 1300°C. The composition with x = 0.5 sintered at 1300°C for 5 h revealed excellent dielectric properties, namely, a dielectric constant (ɛr) of 48, a Q × f value of 32 100 GHz, and a temperature coefficient of the resonant frequency (τf) of −2 ppm/K. Li3NbO4 as a sintering additive had no harmful influence on τf of ceramics.  相似文献   

6.
The effects of LiF and ZnO–B2O3–SiO2 (ZBS) glass combined additives on phase composition, microstructures, and microwave dielectric properties of Ca[(Li1/3Nb2/3)0.84Ti0.16]O3−δ (CLNT) ceramics were investigated. The LiF and ZBS glass combined additives lowered the sintering temperature of CLNT ceramics effectively from 1150° to 880°C. The main diffraction peaks of all the specimens split due to the coexistence of the non-stoichiometric phase (A) and stoichiometric phase (B), which all possess CaTiO3-type perovskite structures. The transformation from A into B became accelerated with the increase of LiF or ZBS content. ZBS glass restrained the volatilization of lithium salt, which greatly affected the microstructures and microwave dielectric properties. CLNT ceramics with 2 wt% LiF and 3 wt% ZBS sintered at 900°C for 2 h show excellent dielectric properties: ɛr=34.3, Q × f =17 400 GHz, and τf=−4.6 ppm/°C. It is compatible with Ag electrodes, which makes it a promising ceramic for low-temperature cofired ceramics technology application.  相似文献   

7.
CaRAlO4 (R = Nd, Sm, Y) ceramics with a K2NiF4 structure were prepared by a solid-state reaction approach, and their microwave dielectric characteristics were evaluated, along with their microstructures. Dense CaNdAlO4, CaSmAlO4, and CaYAlO4 ceramics were obtained by sintering at 1425°–1500°C in air for 3 h, and good microwave dielectric characteristics were achieved: (1) ɛ= 18.2, Qf = 17 980 GHz, τf=−52 ppm/°C for CaNdAlO4; (2) ɛ= 18.2, Qf = 51 060 GHz, τf=−3 ppm/°C for CaSmAlO4; and (3) ɛ= 18.9, Qf = 39 960 GHz, τf= 6 ppm/°C for CaYAlO4.  相似文献   

8.
The Ca(B'1/2Nb1/2)O3 [B'=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, Yb, and In] complex perovskites have been prepared by conventional solid-state ceramic route. The structure and microstructure of the ceramics have been characterized by X-ray diffraction and scanning electron microscopy methods. The ceramics have dielectric constant (ɛr) in the range 23–32, normalized Q -factor ( Q u× f ) 11 000–38 000 GHz and temperature coefficient of resonant frequency (τf) −43–5.2 ppm/°C. The microwave dielectric properties of Ca(B'1/2Nb1/2)O3 ceramics are found to depend on the ionic radii of B'-site elements and tolerance factor ( t ). The substitution of Ba2+ and Sr2+ for Ca2+ resulted a phase transition in Ca(B'1/2Nb1/2)O3 ceramics. The (Ca0.05Ba0.95) (Y1/2Nb1/2)O3 has τf close to zero (1.2 ppm/°C) with ɛr=35 and Q u× f =48 500 GHz and is proposed as a useful material for base station applications. Dielectric properties of the Ca(B'1/2Nb1/2)O3 ceramics were tailored by the addition of TiO2 and CaTiO3.  相似文献   

9.
Dielectric properties of the system (1 − x)(La1/2Na1/2)TiO3 x Ca(Fe1/2Nb1/2)O3, where 0.4 # x # 0.6, have been investigated at microwave frequencies. The temperature coefficient of resonant frequency (τf), nearly 0 ppm/°C, was realized at x = 0.58. These ceramics had perovskite structure and showed relatively low dielectric losses. A new dielectric material applicable to microwave devices having Q · f of 12000–14000 GHz and a dielectric constant (εr) of 59–60 has been obtained at 1300–1350°C for 5–15 h sintering.  相似文献   

10.
BaCu(B2O5) ceramics were synthesized and their microwave dielectric properties were investigated. BaCu(B2O5) phase was formed at 700°C and melted above 850°C. The BaCu(B2O5) ceramic sintered at 810°C had a dielectric constant (ɛr) of 7.4, a quality factor ( Q × f ) of 50 000 GHz and a temperature coefficient of resonance frequency (τf) of −32 ppm/°C. As the BaCu(B2O5) ceramic had a low melting temperature and good microwave dielectric properties, it can be used as a low-temperature sintering aid for microwave dielectric materials for low temperature co-fired ceramic application. When BaCu(B2O5) was added to the Ba(Zn1/3Nb2/3)O3 (BZN) ceramic, BZN ceramics were well sintered even at 850°C. BaCu(B2O5) existed as a liquid phase during the sintering and assisted the densification of the BZN ceramic. Good microwave dielectric properties of Q × f =16 000 GHz, ɛr=35, and τf=22.1 ppm/°C were obtained for the BZN+6.0 mol% BaCu(B2O5) ceramic sintered at 875°C for 2 h.  相似文献   

11.
(Ca1+ x Sm1− x )(Al1− x Ti x )O4 (0≤ x ≤0.4) ceramics were synthesized by solid-state reaction method and their microstructures and microwave dielectric properties were investigated. X-ray diffraction analysis and energy-dispersive X-ray analysis indicated that the matrix phase was a solid solution with a composition represented by the chemical formula (Ca1+ x Sm1− x ) (Al1− x Ti x )O4 and minor amount of (Ca,Sm)(Al,Ti)O3 secondary phase was detected. Ca/Ti cosubstitution could significantly improve the microwave dielectric characteristics of CaSmAlO4 ceramics, and the excellent microwave dielectric characteristics were obtained in the modified ceramics as ɛr=19–23, Q × f =49 100–118 700 GHz, and τf=−15–15 ppm/°C.  相似文献   

12.
The effects of V2O5 addition on the sintering behavior, microstructure, and the microwave dielectric properties of 5Li2O–0.583Nb2O5–3.248TiO2 (LNT) ceramics have been investigated. With addition of low-level doping of V2O5 (≤2 wt%), the sintering temperature of the LNT ceramics could be lowered down to around 920°C due to the liquid phase effect. A secondary phase was observed at the level of 2 wt% V2O5 addition. The addition of V2O5 does not induce much degradation in the microwave dielectric properties but lowers the τf value to near zero. Typically, the excellent microwave dielectric properties of ɛr=21.5, Q × f =32 938 GHz, and τf=6.1 ppm/°C could be obtained for the 1 wt% V2O5-doped sample sintered at 920°C, which is promising for application of the multilayer microwave devices using Ag as an internal electrode.  相似文献   

13.
Low-loss dielectric ceramics based on Ba(B'1/2Ta1/2)O3 (B'=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Yb, and In) complex perovskites have been prepared by the solid-state ceramic route. The dielectric properties (ɛr, Q u, and τf) of the ceramics have been measured in the frequency range 4–6 GHz by the resonance method. The resonators have a relatively high dielectric constant and high quality factor. Most of the compounds have a low coefficient of temperature variation of the resonant frequencies. The microwave dielectric properties have been improved by the addition of dopants and by solid solution formation. The solid solution Ba[(Y1− x Pr x )1/2Ta1/2]O3 has x =0.15, with ɛr=33.2, Q u× f =51,500 GHz, and τf≈0. The microwave dielectric properties of Ba(B'1/2Ta1/2)O3 ceramics are found to depend on the tolerance factor ( t ), ionic radius, and ionization energy.  相似文献   

14.
The crystal structure and microwave dielectric properties of the (1 − x ) La(Zn1/2Ti1/2)O3· x SrTiO3 and (1 − x )La(Zn1/2Ti1/2)O3· x CaTiO3 system were investigated. X-ray powder diffraction showed that cation ordering disappeared at x > 0.3 for both systems. However, infrared spectra demonstrated that short-range cation ordering could exist at x = 0.4. Permittivity and the temperature coefficient of the resonant frequency (τf) of both systems exhibited nonmonotonic variations with composition. Both systems exhibited a τf of zero at the same composition of x = 0.5 although the τf of SrTiO3 was about two times larger than that of CaTiO3. The behavior of the permittivity and τf were described by the tilting of oxygen octahedra and cation ordering. The relation between τf and cation ordering of La(Zn1/2Ti1/2)O3 was discussed in conjunction with the experimental results on metal halides. It is suggested that cation ordering induced a negative τf and suppressed the increase of permittivity for compositions between x = 0 to x = 0.5 for (1 − x )La(Zn1/2Ti1/2)O3· x SrTiO3 and (1 − x )La(Zn1/2Ti1/2)O3· x CaTiO3 systems.  相似文献   

15.
Dolomite-type borate ceramics consisting of CaZrB2O6 were synthesized via a conventional solid-state reaction route; low-temperature sintering was explored using Bi2O3–CuO additives of 1–7 wt% for low-temperature co-fired ceramics applications. For several sintering temperatures, the microwave dielectric properties and chemical resistance of the ceramics were investigated. The CaZrB2O6 ceramics with 3 wt% Bi2O3–CuO addition could be sintered below 925°C, and the microwave dielectric properties of the low-temperature samples were ɛr=10.55, Q × f =87,350 GHz, and τf=+2 ppm/°C. The chemical resistance test result showed that both CaZrB2O6- and Bi2O3–CuO-added CaZrB2O6 ceramics were durable in basic solution but were degraded in acid solution.  相似文献   

16.
The effect of the addition of V2O5 on the structure, sintering and dielectric properties of M -phase (Li1+ x − y Nb1− x −3 y Ti x +4 y )O3 ceramics has been investigated. Homogeneous substitution of V5+ for Nb5+ was obtained in LiNb0.6(1− x )V0.6 x Ti0.5O3 for x ≤ 0.02. The addition of V2O5 led to a large reduction in the sintering temperature and samples with x = 0.02 could be fully densified at 900°C. The substitution of vanadia had a relatively minor adverse effect on the microwave dielectric properties of the M -phase system and the x = 0.02 ceramics had [alt epsilon]r= 66, Q × f = 3800 at 5.6 GHz, and τf= 11 ppm/°C. Preliminary investigations suggest that silver metallization does not diffuse into the V2O5-doped M -phase ceramics at 900°C, making these materials potential candidates for low-temperature cofired ceramic (LTCC) applications.  相似文献   

17.
The effect of B2O3–SiO2 liquid-phase additives on the sintering, microstructure, and microwave dielectric properties of LiNb0.63Ti0.4625O3 ceramics was investigated. It was found that the sintering temperature could be lowered easily, and the densification and dielectric properties of LiNb0.63Ti0.4625O3 ceramics could be greatly improved by adding a small amount of B2O3–SiO2 solution additives. No secondary phase was observed for the ceramics with B2O3–SiO2 additives. With the addition of 0.10 wt% B2O3–SiO2, the ceramics sintered at 900°C showed favorable microwave dielectric properties with ɛr=71.7, Q × f =4950 GHz, and τf=−2.1 ppm/°C. The energy dispersive spectra analysis showed an excellent co-firing interfacial behavior between the LiNb0.63Ti0.4625O3 ceramic and the Ag electrode. It indicated that LiNb0.63Ti0.4625O3 ceramics with B2O3–SiO2 solution additives have a number of potential applications on passive integrated devices based on the low-temperature co-fired ceramics technology.  相似文献   

18.
Low-loss ceramics having the chemical formula Mg2(Ti1− x Sn x )O4 for x ranging from 0.01 to 0.09 have been prepared by the conventional mixed oxide route and their microwave dielectric properties have been investigated. X-ray powder diffraction patterns indicate the corundum-structured solid solutions for the prepared compounds. In addition, lattice parameters, which linearly increase from 8.4414 to 8.4441 Å with the rise of x from 0.01 to 0.09, also confirm the forming of solid solutions. By increasing x from 0.01 to 0.05, the Q × f of the specimen can be tremendously boosted from 173 000 GHz to a maximum 318 000 GHz. A fine combination of microwave dielectric properties (ɛr∼15.57, Q × f ∼318 000 GHz at 10.8 GHz, τf∼−45.1 ppm/°C) was achieved for Mg2(Ti0.95Sn0.05)O4 ceramics sintered at 1390°C for 4 h. Ilmenite-structured Mg(Ti0.95Sn0.05)O3r∼16.67, Q × f ∼275 000 GHz at 10.3 GHz, τf∼−53.2 ppm/°C) was detected as a second phase. The presence of the second phase, however, would cause no significant variation in the dielectric properties of the specimen, because the second phase properties are very similar to the primary phase. These unique properties, in particular, low ɛr and high Q × f , can be utilized as a very promising dielectric material for ultra-high-frequency applications.  相似文献   

19.
The Sr(B'0.5Ta0.5)O3 ceramics where B'=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, and Yb have been prepared by the conventional solid-state ceramic route and their microwave dielectric properties have been investigated. The structure and microstructure of the ceramics have been characterized by X-ray diffraction and scanning electron microscope techniques. The relative permittiviy (ɛr) varies linearly with B'-site ionic radii, except for La, and the temperature coefficient of resonant frequency (τf) varies linearly with the tolerance factor. The Sr(B'0.5Ta0.5)O3 ceramics have ɛr in the range 25.9–32, Q u× f =4500–54 300 GHz, and τf=−79 to −42 ppm/°C. A slight deviation from stoichiometry affects the dielectric properties of these double perovskites. Partial substitution of Ba for Sr could tune the dielectric properties. Addition of rutile (TiO2) lowered the sintering temperature and improved the dielectric properties of Sr(B'0.5Ta0.5)O3 ceramics.  相似文献   

20.
Ca(Zn1/3Nb2/3)O3 microwave dielectric ceramics were prepared using a solid-state reaction process, and their microwave dielectric properties were evaluated as functions of sintering and postdensification annealing conditions. The relationship between microwave dielectric properties and processing was interpreted through the variation of microstructures. The dielectric constant showed slight variation with sintering and annealing conditions, but the Q × f value increased at first and then decreased with increased sintering temperature, and annealing in oxygen indicated significant improvement in Q × f , especially for the specimens sintered at higher temperatures. The good microwave dielectric properties were obtained in the ceramics sintered at 1225°C in air for 3 h and annealed at 1100°C in oxygen for 8 h: ɛ= 34.1, Q × f = 15 890 GHz, τf=−48 ppm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号