首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在630℃下,对P92钢进行应力控制下的蠕变-疲劳交互作用实验,研究P92钢高温蠕变-疲劳交互作用下的裂纹扩展行为,并结合断口形貌分析蠕变-疲劳裂纹扩展的机理以及a-N曲线的转折点含义。结果表明:P92钢在蠕变-疲劳交互作用下的断裂属于蠕变韧性断裂,应该用(C_t)_(avg)作为裂纹扩展的断裂参量;P92钢在蠕变-疲劳交互条件下,试样的断口主要表现为蠕变孔洞以及微裂纹。此外,发现a-lg(N_i/N_f)曲线以及(da-dN)-N曲线中的拐点,分别对应蠕变-疲劳裂纹萌生区向扩展区转变周次以及扩展区向瞬断区转变的周次。  相似文献   

2.
Hold-time effects on high temperature fatigue crack growth in Udimet 700   总被引:1,自引:0,他引:1  
Crack growth behaviour under creep-fatigue conditions in Udimet 700 has been studied, and the crack growth data were analysed in terms of the stress intensity factor as well as theJ-integral parameter. Crack growth behaviour is shown to depend on the initial stress intensity level and the duration of hold-time at the peak load. For stress intensities that are lower than the threshold stress intensity for creep crack growth, the crack growth rate decreases with increase in hold time even on a cycle basis, da/dN, to the extent that complete crack arrest could occur at prolonged hold times. This beneficial creep-fatigue interaction is attributed to the stress relaxation due to creep. For stress intensities greater than the threshold stress intensity for creep crack growth, the growth rate on a cycle basis increases with increase in hold time. For the conditions where there is no crack arrest, the crack growth appears to be essentially cycle-dependent in the low stress intensity range and time-dependent in the high stress intensity range. Both the stress intensity factor and theJ-integral are shown to be valid only in a limited range of loads and hold-times where crack growth rate increases continuously.  相似文献   

3.
研究Ti-6Al-3Nb-2Zr-1Mo合金在不同外加应力下的室温压缩蠕变行为,拟合了蠕变曲线,计算出蠕变发生第二阶段的临界值,并对不同应力水平压缩后的合金显微组织进行TEM观察,研究其位错滑移类型。结果表明:室温条件下,Ti-6Al-3Nb-2Zr-1Mo合金压缩蠕变-时间曲线符合时间强化指数模型,该合金发生蠕变第二阶段的临界值为518 MPa,这为深海装备的安全设计提供了依据。Ti-6Al-3Nb-2Zr-1Mo合金室温压缩蠕变机制主要是位错滑移,其中基面滑移最容易启动,其次是柱面滑移和锥面滑移。结合微观组织分析与蠕变曲线可以判断锥面滑移对蠕变有较大贡献。  相似文献   

4.
Crack growth experiments have been carried out under combined creep and fatigue loading at 700° C on a hot isostatically pressed powder nickel alloy. A fractographic investigation has been undertaken of the modes of failure over a frequency range of 0.001 to 10 Hz. The observations indicate that under static loading and at low frequencies failure is intergranular and controlled by creep processes, whereas at high frequencies a transgranular fatigue fracture is obtained. The transition from creep to fatigue behaviour is found to be progressive, and to begin at a lower frequency the higher the ratio of cyclic to mean load. In the transition region a mixed intergranular and transgranular fracture surface is observed, which correlates well with the recorded proportion of creep to fatigue crack growth.  相似文献   

5.
This paper presents some of our recent results from an ongoing collaborative research programme on creep-fatigue behaviour of two advanced nickel base superalloys for turbine disc applications. The role of creep, fatigue and oxidation in crack growth has been investigated at 650°C under typical loading waveforms at selected loading frequencies. Load-line deflections were monitored in selected tests under static and long dwell loading conditions. Scanning electron microscopy was adopted to identify the fracture mode and to facilitate the evaluation of oxidation.

The results show that mixed time and cycle dependent crack growth seems to be the predominant crack growth mode in the two PM nickel alloys studied. Whilst limited creep may be present at the crack tip, particularly under static and long dwell loading conditions, oxidation appears to be the predominant mechanism for crack growth under the test conditions examined.  相似文献   


6.
Abstract— Static creep crack growth tests and displacement controlled fatigue and creep-fatigue crack growth tests have been performed on austenitic feature weld specimens at 650°C. The creep-fatigue tests incorporated hold times of up to 96 h. During these tests, crack growth appeared to comprise cyclic and dwell components. Cyclic crack growth components were characterised by the fracture mechanics parameter K whilst creep crack growth contributions were correlated with C *. In order to determine K and C * for the non-standard feature weld specimen, elastic and elastic-plastic creep finite element analyses were conducted. Good correspondence is shown between the feature weld data and comparable data from compact tension specimen tests on similar materials. Equations obtained from the compact tension specimen results, which describe total crack growth rates as the sum of the cyclic and dwell contributions, are shown to adequately describe the features test results also. Furthermore, it is demonstrated that a reference stress approach can be used to estimate C * for the features specimens.  相似文献   

7.
通过对 GH33A 合金在蠕变与疲劳复合加载条件下的系列试验,发现拉伸保时使蠕变与疲劳发生了交互作用,加快了疲劳裂纹扩展速率,加速裂纹早期进入失稳扩展,大大降低了疲劳寿命。GH33A 合金具有良好的抗蠕变裂纹扩展能力,但疲劳裂纹扩展阻力较低。由此讨论了拉伸保时对裂纹扩展的影响,并对在蠕变-疲劳交互作用下的裂纹扩展模型作了探讨。  相似文献   

8.
The flexural creep and creep strain recovery behaviour during creep-fatigue tests of a cross-ply SiC fibre reinforced Barium Magnesium Aluminosilicate glass-ceramic matrix composite was investigated at 1100°C in air. Only heat-treated samples (1 h at 1100°C) were tested. Stress levels of 90, 105 and 120 MPa were examined to produce low strains (?0.4”?). A continuously decreasing creep strain rate with values between 1.6 × 10?6 s?1 to 4.7 × 10?8s?i at 120 MPa was observed with no steady-state regime. Extensive viscous strain recovery was found upon the unloading period during the short-duration cyclic creep (creep-fatigue) experiments. The creep strain recovery was quantified using strain recovery ratios. These ratios showed a slight dependence on the stress and cyclic loading frequencies investigated. The crept composites retained their ?graceful”? fracture behaviour after testing indicating that no (or limited) damage in the matrix was induced during creep and creep-fatigue loading.  相似文献   

9.
Observations concerning the effects of the environment and material variables on the crack growth process in alloy 718 are reviewed and analyzed on the basis of deformation characteristics in the crack tip region. The review of the role of material variables has focused on the effects of chemical composition and microstructure parameters including precipitate size and morphology as well as grain size and morphology. These analyses have suggested that the governing mechanism at the crack tip is the degree of homogeneity of plastic deformation and associated slip density. For conditions promoting homogeneous plastic deformation, with a high degree of slip density, the environmental damage contribution is shown to be limited, thus permitting the dominance of cyclic damage effects which are characterized by a transgranular crack growth mode and a lower crack growth rate. Under conditions leading to inhomogeneous plastic deformation and lower slip density the crack tip damage is described in terms of grain boundary oxidation and related intergranular fracture mode. Considering that the crack growth damage mechanism in alloy 718 ranges from fully cycle dependent to fully environment dependent, conflicting experimental observations under different operating conditions are examined and a sensitizing approach is suggested to increase the alloy resistance to environmental effects.  相似文献   

10.
The fatigue crack growth (FCG) behaviour in a Ni-based turbine disc alloy with two grain sized variants, in a low solvus high refractory (LSHR) superalloy has been investigated under a range of temperatures (650–725 °C) and environments (air and vacuum) with trapezoidal waveforms of 1:1:1:1 and 1:20:1:1 durations at an R = 0.1. The results indicate that a coarse grained structure possesses better FCG resistance due to the enhanced slip reversibility promoted by planar slip as well as the reduction in grain boundary area. The fatigue performance of the LSHR superalloy is significantly degraded by the synergistic oxidation effect brought about by high temperature, oxidising environment and dwell at the peak load, associated with increasingly intergranular fracture features and secondary grain boundary cracking. Secondary cracks are observed to be blocked or deflected around primary γ′, carbides and borides, and their occurrence closely relates to the roughness of the fracture surface, FCG rate and grain boundary oxidation. The apparent activation energy technique provides a further insight into the underlying mechanism of the FCG under oxidation–creep–fatigue testing conditions, and confirms that oxidation fatigue is the dominant process contributing to the intergranular failure process. At high enough crack growth rates, at lower temperatures, cycle dependent crack growth processes can outstrip crack-tip oxidation processes.  相似文献   

11.
Abstract— The fatigue crack growth behaviour and crack closure response of a zinc base die casting alloy at high homologous temperature were studied. The crack growth rate was both frequency and temperature dependent. The frequency dependence of crack growth rate, which has been commonly attributed to creep-fatigue interaction, can be rationalized by the crack closure phenomenon. The temperature dependence is contrary to that observed in other materials and cannot be simply explained in terms of the interaction between creep and fatigue damage. The effect of a single tensile overload on the crack growth behaviour at high homologous temperatures has also been investigated.  相似文献   

12.
New and published fatigue crack growth data for a wide range of steels have been categorized in terms of different growth mechanisms, namely striation formation, microcleavage, void coalescence and intergranular separation. General principles emerged concerning the influence of mean stress, specimen thickness, flow stress and toughness on rates of fatigue crack propagation through their effect on growth mechanism.

Crack propagation rates associated with striation formation were insensitive to changes in mean stress (except at very low stress intensities) and specimen thickness. Increase in flow stress resulted in a small decrease in growth rate, although the path of a crack through complex structures like welds was, nevertheless, strongly influenced by plastic relaxation. Crack propagation rates increased when deformation led to net-section yielding (general yielding) and the increase was related to specimen thickness and geometry. It has been shown that simple relationships between the rate of propagation and alternating stress intensity are adequate for describing fatigue crack growth by the striation mechanism.

Departures from exclusively striation formation to include micro-cleavage, void coalescence or intergranular separation were found to result in accelerated growth rates. Where growth occurred by combined striation formation and microcleavage, the increase in fatigue crack growth rate was dependent on the maximum tensile stress and hence on the mean stress and specimen thickness. Similarly, when fatigue involved the void coalescence mechanism the rate was increased by raising the mean stress. The role of microstructure and fracture toughness in promoting the different growth mechanisms is discussed. Modification of the simple growth law is necessary in order to describe the observed results.  相似文献   


13.
An existing extensive database on the isothermal and thermomechanical fatigue behaviour of high-temperature titanium alloy EVII 834 and dispersoid-strengthened aluminum alloy X8019 in SiC particle-reinforced as well as unreinv conditions was used to evaluate both the adaptability of fracture mechanics approaches to TMF and the resulting predictive capabilities of determining material life by crack propagation consideration. Selection of the correct microstructural concepts was emphasised and these concepts were, then adjusted by using data from independent experiments in order to avoid any sort of fitting. It is shown that the cyclic /-integral (δJeff concept) is suitable to predict the cyclic lifetime for conditions where the total crack propagation rate is approximately identical to pure fatigue crack growth velocity. In the case that crack propagation is strongly affected by creep, the creep-fatigue damage parameter δCF introduced by Riedel can be successfully applied. If environmental effects are very pronounced, the accelerating influence of corrosion on fatigue crack propagation can no longer implicitly be taken into account in the fatigue crack growth law. Instead, a linear combination of the crack growth rate contributions from plain fatigue (determined in vacuum) and from environmental attack is assumed and found to yield a satisfactory prediction, if the relevant corrosion process is taken into account.  相似文献   

14.
Many experimental studies have been reported on the measurements of crack growth rate and the observation of crack growth behaviour under high temperature creep, fatigue and creep-fatigue interaction in literatures. However, many of them have been done in air atmosphere. Furthermore, in many of them the measurements of the crack growth rate have been carried out by interrupting intermittently the running of the testing machine. In such experiments the complex effects due to the atmosphere, the interruption period and the corresponding unloading operation for the crack length measurement might have been involved.In the present paper in order to eliminate such effects, series of experimental studies on the crack growth behaviour under creep, fatigue and creep-fatigue interaction conditions on 304 stainless steel have been carried out by using high temperature microscope and observing the crack length continuously during running the test without interruption in vacuum of 10?5mm Hg.Among the results, it was found that crack growth rates on a time basis, da/dt, under high temperature creep and creep-fatigue interaction conditions can not be described in terms of solely elastic stress intensity factor ki or only net section stress σnet, both independent of gross section stress σg. The relation between crack growth rate and stress intensity factor under high temperature fatigue condition changes with some trend according to gross section stress at lower KI level and it can be approximately described in terms of stress intensity factor KI only, at higher KI level. The threshold stress intensity factor and the threshold net section stress under high temperature creep, fatigue and creep-fatigue interaction conditions appears to be almost independent of temperature.  相似文献   

15.
The effects of displacement rate on fracture behaviors of 100Sn solder and 63Sn37Pb solder alloys have been investigated by SEM in-situ testing. It was found that for the 100Sn solder, grain boundary sliding was the dominant deformation mechanism at lower tensile rate regime, while a large area of slip lines crossing grains were detected at the surface of specimens at higher tensile rate regime. For the 63Sn37Pb eutectic alloy, however, because of existence of the second phase, fracture behavior depended on the growth and linkage of cavities ahead of crack tip, and the crack paths changed from intergranular to transgranular with the increasing of loading rate.  相似文献   

16.
The implementation of unitized structure in the aerospace industry has resulted in complex geometries and load paths. Hence, structural failure due to three-dimensional mixed-mode fatigue crack growth is a mounting concern. In addition, the development of functionally graded materials has further complicated structural integrity issues by intentionally introducing material variability to create desirable mechanical behavior. Ti-6Al-4V β-STOA (solution treated over-aged) titanium is a functionally graded metallic alloy that has been tailored for superior fatigue crack growth and fracture response compared with traditional titanium alloys. Specifically, the near-surface material of Ti β-STOA is resistant to fatigue crack incubation and the interior is more resistant to fatigue crack growth and fracture. Therefore, Ti β-STOA is well suited for applications where surface cracking is a known failure mode. Advances in experimental testing have shown that complex loading conditions and multi-faceted materials can be tested reliably. In this paper, the authors will experimentally generate three-dimensional mixed-mode surface crack data in functionally graded Ti-6Al-4V β-STOA and comment on the effect of the material tailoring.  相似文献   

17.
The modes of crack initiation and propagation of several nickel-base superalloys have been examined after fatigue and creep-fatigue testing at 650°C. In fatigue, crack initiation was transgranular and frequently associated with porosity or inclusions in the higher strength alloys. These defects were usually located at the surface, except for tests at low strain ranges where larger, internal defects often initiated failure. Although fatigue crack initiation was transgranular, in those alloys with grain sizes of less than 15 μm, fatigue crack growth quickly became intergranular. This transition was environmentally assisted and did not occur for subsurface cracks until the crack broke through to the atmosphere. In the creep-fatigue cycle, which included a 900 s tensile dwell, crack initiation and propagation wer e both intergranular in all alloys.  相似文献   

18.
The behavior of intergranular fatigue crack growth in an interstitial-free (IF) steel in a hydrogen environment was investigated at different frequencies. Focusing on the plastic strain localization, we observed details of the striation-like feature on the intergranular fracture surface, slip behavior around microvoids, and crystallographic orientation gradient underneath the fracture surface. It was determined that the intergranular fatigue crack growth mechanism in the IF steel is microvoid formation at the crack tip and subsequent coalescence with the crack. Moreover, it was found that the grain boundaries, acting as propagation paths, suffer from pre-damage arising from plastic strain localization near the grain boundaries even before the main crack propagates to a certain location. Therefore, fatigue cracks in a hydrogen environment easily propagate to the grain boundaries. The frequency dependence of fatigue crack growth in the hydrogen environment is significantly smaller than that in a low carbon steel, probably because of the frequency dependence of the pre-damage evolution behavior.  相似文献   

19.
The growth of cracks from spark-machined slits and gouged grooves under thermal shock conditions has been studied in 316 stainless steel using sodium as the heat transfer medium. The cycles consisted of a step increase in temperature followed by a tensile hold at 600°C. Comparative uniaxial creep-fatigue tests have been performed isothermally at 600°C. Differences in the stress distributions in the uniaxial and thermal shock specimens led to higher crack growth rates in the uniaxial tests. These have been taken into account in theoretical predictions based on the creep parameter C*. This led to very reasonable upper bounds to the experimentally observed increase in crack growth rate due to hold time for both types of specimen.  相似文献   

20.
This study concerns the application of the local approach to creep-fatigue crack initiation and creep crack growth in components submitted to combined mechanical and thermal loadings leading to intergranular damage. The purpose is to assess the remaining life of a structure with a crack detected during in service inspection or with a geometrical singularity. A new numerical method based on finite element computations and on a damage model relying on quantitative observations of grain boundary damage is proposed. The numerical results obtained are in good agreement with experimental data. They also fit them better than the classical global approach predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号