共查询到20条相似文献,搜索用时 15 毫秒
1.
This study assessed the acid tolerance response (ATR) of stationary phase, acid-adapted (tryptic soy broth [TSB]+1% glucose) or nonacid-adapted (glucose-free TSB) Escherichia coli O157:H7 strains (ATCC43889, ATCC43895, ATCC51658 and EO139), grown individually or in a mixed culture, prior to inoculation of beef or meat decontamination runoff (washings) fluids (acidic [pH 4.95] or nonacidic [pH 7.01]). The inoculated beef was left untreated or treated by dipping for 30s in hot water (75 degrees C) followed by 2% lactic acid (55 degrees C). Inoculated beef samples and washings were stored aerobically at 4 or 15 degrees C for 6d, and at set intervals (0, 2, and 6d) were exposed (for 0, 60, 120, and 180min) to pH 3.5 (adjusted with lactic acid) TSB plus 0.6% yeast extract. Overall, there were no significant (P0.05) differences in responses of cultures prepared as individual or mixed strains. Decontamination of meat did not affect the subsequent ATR of E. coli O157:H7 other than resulting in lower initial pathogen levels exposed to acidic conditions. In this study, E. coli O157:H7 appeared to become more tolerant to acid following incubation in acidic washings of sublethal pH (4.89-5.22) compared to nonacidic washings (pH 6.97-7.41) at 4 degrees C or in both types of washings incubated at 15 degrees C. The ATR of the pathogen inoculated into washings was enhanced when cells were previously acid-adapted and incubated at 4 degrees C. Similarly, the ATR on meat was increased by previous acid-adaptation of the inoculum in broth and enhanced by storage at 4 degrees C. Populations on treated meat were consistently lower than those on untreated meat during storage and following exposure to acid. Although on day-0 there were no significant (P0.05) differences in ATR between acid-adapted and nonacid-adapted populations on meat, acid-adapted cells displayed consistently higher resistance through day-6. This suggests that acid-adapted E. coli O157:H7 introduced on meat may become resistant to subsequent lactic acid exposure following storage at 4 degrees C. 相似文献
2.
Stopforth JD Samelis J Sofos JN Kendall PA Smith GC 《Journal of food protection》2003,66(12):2258-2266
This study evaluated resistance to sanitizing solutions of Escherichia coli O157:H7 cells forming biofilms on stainless steel coupons exposed to inoculated meat decontamination runoff fluids (washings). A previously acid-adapted culture of a rifampicin-resistant derivative of E. coli O157:H7 strain ATCC 43895 was inoculated in unsterilized or sterilized combined hot-water (85 degrees C) and cold-water (10 degrees C) (50/50 [vol/vol]) composite water (W) washings (pH 6.29 to 6.47) and in W washings mixed with 2% acetic acid (pH 4.60 to 4.71) or in 2% lactic acid W washings (pH 4.33 to 4.48) at a ratio of 1/99 (vol/vol). Stainless steel coupons (2 by 5 by 0.08 cm) were submerged in the inoculated washings and stored for up to 14 days at 15 degrees C. Survival of E. coli O157:H7 was determined after exposure (0 to 60 s for cells in suspension and 0 to 300 s for attached cells) to two commercial sanitizers (150 ppm peroxyacetic acid and 200 ppm quaternary ammonium compound) at 2, 7, and 14 days. E. coli O157:H7 attached more rapidly to coupons submerged in washings containing the natural flora than to those without. The attached cells were more resistant to the effects of the sanitizers than were the cells in suspension, and survival was highest in the presence of the natural flora. Attached cells in the presence of dilute acid washings were more sensitive to subsequent sanitizer treatments than were cells generated in the presence of W washings. Under the conditions of this study, cells of E. coli O157:H7 in W washings were more sensitive to acidic (peroxyacetic acid) than to alkaline (quaternary ammonium) sanitizers during storage. These results suggest that meat processing plants that apply no decontamination or that use only water washings of meat should consider using acidic sanitizers to enhance biofilm removal. Plants that apply both water and acidic washings may create a sublethal acid-stressing environment in the runoff fluids, sensitizing biofilm cells to subsequent sanitizing treatments. 相似文献
3.
Calicioglu M Sofos JN Samelis J Kendall PA Smith GC 《Journal of food protection》2002,65(9):1394-1405
The inactivation of both acid-adapted and unadapted Escherichia coli O157:H7 during the processing of beef jerky was studied. Following inoculation with the pathogen, beef slices were subjected to different predrying marinade treatments, dried at 60 degrees C for 10 h, and stored at 25 degrees C for 60 d. The predrying treatments evaluated were as follows: (i) no treatment (C), (ii) traditional marinade (TM), (iii) double-strength TM modified with added 1.2% sodium lactate, 9% acetic acid, and 68% soy sauce with 5% ethanol (MM), (iv) dipping into 5% acetic acid for 10 min followed by application of TM (AATM), and (v) dipping into 1% Tween 20 for 15 min and then into 5% acetic acid for 10 min followed by TM (TWTM). Bacterial survivors were determined during drying and storage using tryptic soy agar with 0.1% pyruvate, modified eosin methylene blue agar, and sorbitol MacConkey agar. Results indicated that bacterial populations decreased during drying in the order of TWTM (4.9 to 6.7 log) > AATM > MM > C > or = TM (2.8 to 4.9 log) predrying treatments. Populations of acid-adapted E. coli O157:H7 decreased faster (P < 0.05) in AATM and TWTM than nonadapted cells during drying, whereas no significant difference was found in inactivation of acid-adapted and nonadapted inocula in C and TM samples. MM was more effective in inactivating the nonadapted than the adapted inoculum. Bacterial populations continued to decline during storage and dropped below the detection limit (-0.4 log10 CFU/cm2) as early as day 0 (after drying) or as late as day 60, depending on acid adaptation, predrying treatment, and agar medium. The results indicated that acid adaptation may not increase resistance to the hurdles involved in jerky processing and that use of additional antimicrobial chemicals or preservatives in jerky marination may improve the effectiveness of drying in inactivating E. coli O157:H7. 相似文献
4.
Stopforth JD Ikeda JS Kendall PA Sofos JN 《International journal of food microbiology》2004,90(1):51-61
This study evaluated survival/growth of acid-adapted or nonadapted Escherichia coli O157:H7 inoculated (4 log CFU/wound) in wounds (10 mm deepx6 mm diameter) of apples. Wounds were inoculated with a green fluorescent protein (GFP)-expressing derivative of a rifampicin-resistant strain of E. coli O157:H7 ATCC 43895 and allowed to attach (1 h). Apples were dipped (2 min) in solutions (approximately 25 degrees C) of water (W), 5% acetic acid (AA), 5% hydrogen peroxide (HP), 0.02% sodium hypochlorite (SH), or not treated (NT), and stored at 25 degrees C. Survivors were determined in cores (10-mm deep) of the apple wounds (12 mm from center of wound; inner core) and surrounding tissue (18 mm from center of wound; outer core) after homogenizing the samples in Dey-Engley (D/E) neutralizing broth and plating on tryptic soy agar (TSA) and TSA supplemented with 100 microg/ml rifampicin (35 degrees C, 48 h) after 0, 2 and 5 days. Average bacterial populations at day-0 were 4.0 and 2.0 logs in the inner and outer core, respectively. In the inner core of the untreated apples populations increased to 7.0 logs at day-2, while counts did not exceed 3.0 logs in the outer core during storage of all treatments. Previous acid-adaptation of the cultures did not affect survival of the pathogen. Dipping in W, AA and SH did not reduce initial bacterial populations, while at day-2 of storage inner core counts from W, AA and SH reached 7.1, 5.5 and 6.9 logs, respectively. In contrast, HP reduced initial counts in the inner core by approximately 1.5 logs, but they increased to 7.0 logs by day-2. Populations of all treatments reached 6.6-7.2 logs in the inner core by day-5. Thus, sanitizer treatment did not effectively reduce nor inhibit growth of E. coli O157:H7 contamination in apple wounds and surrounding tissue. 相似文献
5.
Bacterial pathogens may colonize meat plants and increase food safety risks following survival, stress hardening, or proliferation in meat decontamination fluids (washings). The objective of this study was to evaluate the ability of Escherichia coli O157:H7, Salmonella Typhimurium DT 104, and Listeria monocytogenes to survive or grow in spray-washing fluids from fresh beef top rounds sprayed with water (10 or 85 degrees C) or acid solutions (2% lactic or acetic acid, 55 degrees C) during storage of the washings at 4 or 10 degrees C in air to simulate plant conditions. Inoculated Salmonella Typhimurium DT 104 (5.4 +/- 0.1 log CFU/ml) died off in lactate (pH 2.4 +/- 0.1) and acetate (pH 3.1 +/- 0.2) washings by 2 days at either storage temperature. In contrast, inoculated E. coli O157:H7 (5.2 +/- 0.1 log CFU/ml) and L. monocytogenes (5.4 +/- 0.1 log CFU/ml) survived in lactate washings for at least 2 days and in acetate washings for at least 7 and 4 days, respectively; their survival was better in acidic washings stored at 4 degrees C than at 10 degrees C. All inoculated pathogens survived in nonacid (pH > 6.0) washings, but their fate was different. E. coli O157:H7 did not grow at either temperature in water washings, whereas Salmonella Typhimurium DT 104 failed to multiply at 4 degrees C but increased by approximately 2 logs at 10 degrees C. L. monocytogenes multiplied (0.6 to 1.3 logs) at both temperatures in water washings. These results indicated that bacterial pathogens may survive for several days in acidic, and proliferate in water, washings of meat, serving as potential cross-contamination sources, if pathogen niches are established in the plant. The responses of surviving pathogens in meat decontamination waste fluids to acid or other stresses need to be addressed to better evaluate potential food safety risks. 相似文献
6.
The effects of lactic acid, acetic acid, and acidic calcium sulfate (ACS) on viability and subsequent acid tolerance of three strains of Escherichia coli O157:H7 were determined. Differences in tolerance to acidic environments were observed among strains, but the level of tolerance was not affected by the acidulant to which cells had been exposed. Cells of E. coli O157:H7 adapted to grow on tryptic soy agar acidified to pH 4.5 with ACS were compared to cells grown at pH 7.2 in the absence of ACS for their ability to survive after inoculation into ground beef treated with ACS, as well as untreated beef. The number of ACS-adapted cells recovered from ACS-treated beef was significantly (alpha = 0.05) higher than the number of control cells recovered from ACS-treated beef during the first 3 days of a 10-day storage period at 4 degrees C, suggesting that ACS-adapted cells might be initially more tolerant than unadapted cells to reduced pH in ACS-treated beef. Regardless of treatment of ground beef with ACS or adaptation of E. coli O157:H7 to ACS before inoculating ground beef, the pathogen survived in high numbers. 相似文献
7.
《Food microbiology》2003,20(2):169-177
The objective of the present study was to investigate survival of acid-adapted and non-adapted E. coli O157:H7 inoculated after drying on beef jerky that was treated with marinades before drying. Beef slices were not marinated before drying (control—C), or subjected to the following marinades (24 h, 4°C) prior to drying at 60°C for 10 h: (1) traditional marinade (TM), (2) double the amount of TM modified with added 1.2% sodium lactate, 9% acetic acid, and 68% soy sauce with 5% ethanol) (MM), (3) dipping into 5% acetic acid followed by TM (AATM), and (4) dipping into 1% Tween 20 and then into 5% acetic acid followed by the TM (TWTM). Dried slices were inoculated with acid-adapted or non-adapted E. coli O157:H7 (c. 6.2 log cfu cm−2) prior to aerobic storage at 25°C for 60 days. Survivors were determined using tryptic soy agar with 0.1% pyruvate, modified eosin methlylene blue agar, and sorbitol MacConkey agar. Results indicated that bacterial populations decreased during storage in the order of predrying marinade treatments TWTM⩾AATM>MM>C⩾TM. Populations decreased faster on jerky inoculated with acid-adapted cultures than with non-adapted cultures in all treatments. A 5.0 log reduction in bacterial counts was achieved within 7 days (TWTM and AATM) or never achieved during the 60 days storage period (C, TM). The earliest elimination (enrichment negative) of the pathogen occurred by 28 days (TWTM, ATTM and MM) in products inoculated with acid-adapted cultures and by 42 days (TWTM and AATM) in products inoculated with non-adapted cultures. It is concluded that under the conditions of this study, modified marinades and low water activity provide antimicrobial effects against possible post-processing contamination of beef jerky with E. coli O157:H7. Acid adaptation of cultures enhanced their inactivation during storage. 相似文献
8.
The translocation of Escherichia coli O157:H7 as well as the impact of water washing and partial or complete surface trimming as possible pathogen reduction strategies were evaluated for vacuum-packaged beef subprimals destined for nonintact use. Cap-on and cap-off beef top sirloin butts were inoculated with two levels of E. coli O157:H7: a high-inoculum level of approximately 10(4) CFU/cm(2) and a low-inoculum level of approximately 10(2) CFU/cm(2). Following inoculation, the subprimals were vacuum packaged and stored for 0, 14, or 28 days. Upon removal from storage, the following sites were evaluated: exterior of the bag, purge, the inoculation site on the subprimal, the area adjacent to the inoculation site, and the surface opposite from the inoculation site. The following treatments then were applied: water wash, water wash followed by full-surface trimming, water wash followed by partial-surface trimming, full-surface trimming, full-surface trimming followed by water wash, partial-surface trimming, and partial-surface trimming followed by water wash. For both high- and low-inoculated top sirloin butts, contamination of adjacent and opposite surfaces was found after vacuum packaging. Of the treatments applied, water washing alone was the least effective for both high- and low-inoculated subprimals. Full trimming, with or without a water wash, proved to be the most effective treatment used to reduce E. coli O157:H7 to nondetectable levels. 相似文献
9.
Wileman BW Thomson DU Olson KC Jaeger JR Pacheco LA Bolte J Burkhardt DT Emery DA Straub D 《Journal of food protection》2011,74(10):1599-1604
Extensive research, intervention equipment, money, and media coverage have been directed at controlling Escherichia coli O157:H7 in beef cattle. However, much of the focus has been on controlling this pathogen postcolonization. This study was conducted to examine the performance, health, and shedding characteristics of beef calves that were vaccinated with an E. coli O157:H7 SRP bacterial extract. These calves had been born to cows vaccinated prepartum with the same vaccine. Cows and calves were assigned randomly to one of four treatments: (i) neither cows nor calves vaccinated with E. coli O157:H7 SRP (CON), (ii) cows vaccinated with E. coli O157:H7 SRP prepartum but calves not vaccinated (COWVAC), (iii) calves vaccinated with E. coli O157:H7 SRP but born to cows not vaccinated (CALFVAC), (iv) cows vaccinated with E. coli O157:H7 SRP prepartum and calves also vaccinated (BOTH). Calves born to vaccinated cows had significantly higher titers of anti-E. coli O157:H7 SRP antibodies (SRPAb) in circulation at branding time (P < 0.001). Upon entry to the feedlot, overall fecal E. coli O157:H7 prevalence was 23 % among calves, with 25 % in the CON treatment group, 19 % in the CALFVAC group, 32 % in the COWVAC group, and 15 % in the BOTH group (P > 0.05). Fecal shedding of E. coli O157 on arrival to the feedlot was not correlated with fecal shedding at slaughter (Spearman's rho = -0.02; P = 0.91). No significant effects of cow or calf E. coli O157:H7 SRP vaccination treatment were found on feedlot calf health or performance (P > 0.05), prevalence of lung lesions or liver abscess (P > 0.05), or morbidity, retreatment, or mortality numbers (P > 0.05). The findings of this study indicate that the timing of vaccination of calves against E. coli O157:H7 may be an important consideration for maximizing the field efficacy of this vaccine. 相似文献
10.
Ferenc J Oliver J Witkowski R McLandsborough L Levin RE 《Journal of food protection》2000,63(9):1173-1178
The objectives of the present report were to examine the ability of 18 strains of Escherichia coli O157:H7 to grow in EC broth at 42.4, 43.5, 44.5, and 45.5 degrees C, and to document the incidence of phenotypic variants present in low numbers that are capable of growth at 45.5 degrees C in EC broth. Among the 18 strains of E. coli O157:H7 studied, only 3 were capable of producing turbid growth with gas formation in EC broth at 45.5 degrees C with 1 x 10(2) initial CFU/ml. Higher initial densities of CFU resulted in turbid growth and gas formation in EC broth at 45.5 degrees C with all strains. The presence of bile salts #3 in EC broth was found to be inhibitory at 45.5 degrees C. All 18 strains were found to be capable of growth at 45.5 degrees C in nonselective media. The ability of at least one sensitive strain to grow in EC broth at 45.5 degrees C was found to be dependent on the initial number of CFU/ml. Prior growth of cells of a sensitive strain in EC broth at 45.5 degrees C from a cell density of 2.0 x 10(7) to 8.0 x 10(7) CFU/ml followed by removal of cells and reinoculation at a cell density of 2.0 x 10(6) CFU/ml resulted in growth at 45.5 degrees C that did not occur without such conditioning of the inhibitory medium. These results indicate that the ability of most strains of E. coli O157:H7 to grow in EC broth at 45.5 degrees C is dependent on the initial density of CFU and that at low densities of CFU the ability to initiate growth is dependent on either low numbers of phenotypic variants tolerant to the presence of bile salts #3 in EC broth at 45.5 degrees C or to conditioning of the medium with prior elevated numbers of cells. 相似文献
11.
Yokoigawa K Takikawa A Okubo Y Umesako S 《International journal of food microbiology》2003,82(3):203-211
We examined the acid tolerance and gad mRNA levels of Escherichia coli O157:H7 (three strains) and nonpathogenic E. coli (strains K12, W1485, and B) grown in foods. The E. coli cells (approximately 30,000 cells) were inoculated on the surface of 10 g of solid food samples (asparagus, broccoli, carrot, celery, cucumber, eggplant, ginger, green pepper, onion, potato, radish, tomato and beef) and in 10 ml of cow's milk, cultured statically at 10-25 degrees C for 1-14 days, and subjected to an acid challenge at 37 degrees C for 1 h in LB medium (pH 3.0). When grown at 20 and 25 degrees C in all foods, except for tomato and ginger, the strains showed a stationary-phase specific acid tolerance. The acid tolerance of the O157 strains changed depending on the types of foods (3-10% survival), but was clearly lower than that of the cells grown in EC medium (more than 90% survival). Tomato and ginger induced relatively high acid tolerances (10-30% survival) in the O157 strains irrespective of the growth phase, probably because of their acidity. No remarkable difference was observed in the acid tolerance between the O157 and nonpathogenic strains grown in all foods. When grown at 10 and 15 degrees C in the foods and EC medium, none of the strains showed the stationary-phase specific acid tolerance. In beef, broccoli, celery, potato and radish, the acid tolerance showed a tendency to decrease with the prolonged cultivation time. In other foods, the acid tolerance was almost constant (about 0.1% survival) irrespective of the growth stage. The mRNA level of glutamate decarboxylase genes (gadA and gadB) correlated to the acid tolerance level when the E. coli cells were grown at 25 degrees C, but was very low even in the stationary phase when the E. coli cells were grown at 15 degrees C or below. 相似文献
12.
Cattle are an asymptomatic reservoir of Escherichia coli O157:H7, but the bacterial colonization and shedding patterns are poorly understood. The prevalence and shedding of this human pathogen have been reported to be seasonal with rates typically increasing during warm months. The objectives of this study were (i) to assess the prevalence of E. coli O157:H7 in feces of feedlot cattle in Kansas during summer, fall, and winter months, and (ii) to characterize E. coli O157:H7 by screening for virulence factors. Of 891 fecal samples collected, 82 (9.2%) were positive for E. coli O157:H7. No significant differences in prevalence were detected among summer, fall, and winter months. The highest monthly prevalence (18.1%) was detected in February. All tested isolates were positive for stx2 (Shiga toxin 2) and eaeA (intimin) genes; 14 isolates (12.8%) also carried stx1. Our results indicate the prevalence of E. coli O157:H7 in beef cattle feces is not necessarily season dependent. 相似文献
13.
Tamplin ML Paoli G Marmer BS Phillips J 《International journal of food microbiology》2005,100(1-3):335-344
Escherichia coli O157:H7 can contaminate raw ground beef and cause serious human foodborne illness. Previous reports describe the behavior of E. coli O157:H7 in ground beef under different storage conditions; however, models are lacking for the pathogen's behavior in raw ground beef stored over a broad range of temperature. Using sterile irradiated raw ground beef, the behavioral kinetics of 10 individual E. coli O157:H7 strains and/or a 5- or 10-strain cocktail were measured at storage temperatures from 5° to 46 °C. Growth occurred from 6 to 45 °C. Although lag phase duration (LPD) decreased from 10.5 to 45 °C, no lag phase was observed at 6, 8, or 10 °C. The specific growth rate (SGR) increased from 6 to 42 °C then declined up to 45 °C. In contrast to these profiles, the maximum population density (MPD) declined with increasing temperature, from approximately 9.7 to 8.2 log cfu/g. Bias (Bf) and accuracy (Af) factors for an E. coli O157:H7 broth-based aerobic growth model (10 to 42 °C) applied to the observations in ground beef were 1.05, 2.70, 1.00 and 1.29, 2.87, 1.03, for SGR, LPD and MPD, respectively. New secondary models increased the accuracy of predictions (5 to 45 °C), with Bf and Af for SGR, LPD, and MPD of 1.00, 1.06, and 1.00 and 1.14, 1.33, and 1.02, respectively. These new models offer improved tools for designing and implementing food safety systems and assessing the impact of E. coli O157:H7 disease. 相似文献
14.
A total of 114 beef and baby beef samples were examined. The samples included ground baby beef, mixed ground baby beef and pork, and chopped and shaped meat. The samples were analyzed from 30 different grocery stores in Zagreb, Croatia. The object of this study was to evaluate the prevalence of Escherichia coli O157:H7 in the samples that can enhance the potential risk of outbreaks of hemorrhagic colitis and hemolytic uremic syndrome. The results in all tested samples of E. coli O157:H7 were negative. A single sample was positive in a latex agglutination test using antiserum to O157:H7. It was identified as Proteus vulgaris at the Pasteur Institute, Paris, France. This result correlates positively with cross-contamination with Yersinia enterocolitica 09, Brucella abortus, Salmonella type N, and Pseudomonas maltophila. 相似文献
15.
A study was done to determine if various organic acids differ in their inhibitory or lethal activity against acid-adapted and unadapted Escherichia coli O157:H7 cells. E. coli O157:H7 strain EO139, isolated from venison jerky, was grown in tryptic soy broth (TSB) and in TSB supplemented with 1% glucose (TSBG) for 18 h at 37 degrees C, then plated on tryptic soy agar (TSA) acidified with malic, citric, lactic, or acetic acid at pH 5.4, 5.1, 4.8, 4.5, 4.2, and 3.9. Regardless of whether cells were grown in TSB or TSBG, visible colonies were not formed when plated on TSA acidified with acetic, lactic, malic, or citric acids at pH values of < or =5.4, < or =4.5, < or =4.2, or < or =4.2, respectively. Cells not adapted to reduced pH did not form colonies on TSA acidified with lactic acid (pH 3.9) or acetic acid (pH 3.9 and 4.2); however, a portion of acid-adapted cells remained viable on TSA containing lactic acid (pH 3.9) or acetic acid (pH 4.2) and could be recovered in TSB. Inactivation of acid-adapted cells was less than that of unadapted cells in TSB acidified at pH 3.9 with citric, lactic, or acetic acid and at pH 3.4 with malic acid. Significantly (P< or =0.05) higher numbers of acid-adapted cells, compared with unadapted cells, were detected 12 h after inoculation of TSB acidified with acetic acid at pH 3.9; in TSB containing lactic acid (pH 3.9), the number of acid-adapted cells was higher than the number of unadapted cells after 5 h. In TSB acidified at pH 3.9 with citric acid or pH 3.4 with malic acid, significantly higher numbers of acid-adapted cells survived. This study shows that organic acids differ in their inhibitory or lethal activity against acid-adapted and unadapted E. coli O157:H7 cells, and acid-adapted cells are more tolerant than unadapted cells when subsequently exposed to reduced pH caused by these acids. 相似文献
16.
17.
Raw beef producers currently face the problem of Escherichia coli O157:H7 surface contamination of beef carcasses that can lead to product adulteration. Although carcass interventions are in place, elimination of E. coli O157:H7 from every potential hiding place on the surfaces of a beef carcass is not technologically feasible. Therefore, E. coli O157:H7 on beef carcasses might further contaminate the surfaces of beef trimmings. With the use of case scenarios from nine commercial processing facilities, we present a process control and statistical sampling approach for monitoring beef trimmings to divert contaminated lots of the trimmings from the raw ground beef supply chain. 相似文献
18.
Added salt, seasonings, and phosphates, along with slow- and/or low-temperature cooking impart desirable characteristics to whole-muscle beef, but might enhance Escherichia coli O157:H7 survival. We investigated the effects of added salt, seasoning, and phosphates on E. coli O157:H7 thermotolerance in ground beef, compared E. coli O157:H7 thermotolerance in seasoned roasts and ground beef, and evaluated ground beef-derived D- and z-values for predicting destruction of E. coli O157:H7 in whole-muscle beef cooking. Inoculated seasoned and unseasoned ground beef was heated at constant temperatures of 54.4, 60.0, and 65.5°C to determine D- and z-values, and E. coli O157:H7 survival was monitored in seasoned ground beef during simulated slow cooking. Inoculated, seasoned whole-muscle beef roasts were slow cooked in a commercial smokehouse, and experimentally determined lethality was compared with predicted process lethality. Adding 5% seasoning significantly decreased E. coli O157:H7 thermotolerance in ground beef at 54.4°C, but not at 60 or 65.5°C. Under nonisothermal conditions, E. coli O157:H7 thermotolerance was greater in seasoned whole-muscle beef than in seasoned ground beef. Meeting U.S. Government (U.S. Department of Agriculture, Food Safety and Inspection Service, 1999, Appendix A) whole-muscle beef cooking guidance, which targets Salmonella destruction, would not ensure ≥6.5-log CFU/g reduction of E. coli O157:H7 in ground beef systems, but generally ensured $ 6.5-log CFU/g reduction of this pathogen in seasoned whole-muscle beef. Calculations based on D- and z-values obtained from isothermal ground beef studies increasingly overestimated destruction of E. coli O157:H7 in commercially cooked whole-muscle beef as process severity increased, with a regression line equation of observed reduction = 0.299 (predicted reduction) + 1.4373. 相似文献
19.
An experiment was conducted to determine the effects of the dark, firm, and dry (DFD) condition of beef on growth of the foodborne pathogens Escherichia coli O157:H7, Salmonella Typhimurium DT104, and Listeria monocytogenes Scott A in ground beef. Longissimus muscles from a DFD carcass (pH = 6.45) and normal carcass (N; pH = 5.64) were ground and samples obtained (100 and 0% DFD, respectively). Equal amounts of the 0 and 100% DFD ground samples were mixed to obtain 50% DFD samples. Inoculated 0, 50, and 100% DFD samples were packaged into oxygen-permeable overwrap and stored at 10 degrees C for E. coli O157:H7, Salmonella Typhimurium DT104, and L. monocytogenes Scott A or at 22 degrees C for E. coli O157:H7. Growth characteristics of E. coli O157:H7, Salmonella Typhimurium DT104, and L. monocytogenes Scott A did not differ (P > 0.05) between 0 and 100% DFD. Results indicated that the DFD beef used in this study was no more susceptible to growth of E. coli O157:H7, Salmonella Typhimurium, or L. monocytogenes Scott A than N beef. 相似文献
20.
Lekkas C Kakouri A Paleologos E Voutsinas LP Kontominas MG Samelis J 《Food microbiology》2006,23(3):268-276
Post-process contamination of fresh acid-curd cheeses with Escherichia coli O157:H7 may pose a risk considering the low infectious dose and the ability of the pathogen to survive in acidic foods. To evaluate its survival in Galotyri, a traditional Greek acid-curd cheese, portions (0.5 kg) of two commercial fresh products, one artisan (pH 3.9+/-0.1) and the other industrial (pH 3.7+/-0.1), were inoculated with approximately 3.0 or 6.5 log cfu g(-1) of a five-strain cocktail of E. coli O157:H7, including rifampicin-resistant derivatives of the strains ATCC 43895 and ATCC 51657, and stored aerobically at 4 and 12 degrees C. Survival was monitored for 28 days by plating cheese samples on tryptic soy agar with 100 mg l(-1) rifampicin (TSA+Rif), SMAC and Fluorocult E. coli O157:H7 agar media. The pathogen declined much faster (P<0.05) in the industrial as compared to the artisan cheeses at both temperatures. Thus, while E. coli O157:H7 became undetectable by culture enrichment after 14 days at 4 degrees C in industrial samples, irrespective of the inoculation level, populations of 1.4-1.9 and 4.2-5.1 log cfu g(-1) survived after 28 days in the corresponding artisan cheeses with the low and high inocula, respectively. Survival was longer and greater (P<0.05) on TSA+Rif than on SMAC and Fluorocult, indicating the presence of acid-injured cells. Interestingly, survival of E. coli O157:H7 after 14-28 days in cheeses was better at 12 degrees C than at 4 degrees C, probably due to yeasts which grew on the surface of temperature-abused cheeses. The large difference in the pathogen's inactivation between the industrial and artisan cheeses at 4 degrees C could not be associated with major differences in pH or type/concentration of organic acids, suggesting another anti-E. coli O157:H7 activity by the industrial starter. The high survival of the pathogen in artisan Galotyri under conditions simulating commercial storage should be of concern. 相似文献