首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Previous studies have shown the effects of Er,Cr:YSGG laser irradiation on the dentin bond strength; but there are few reports that show the significance of the irradiation with different laser parameters on dentin bond strength and interface morphology. This in‐vitro study attempted to evaluate the microtensile bond strength (μTBS) and interface morphology of resin‐dentin interfaces, either followed by treatment with Er,Cr:YSGG laser irradiation with different parameters or not. The flattened dentin samples of 35 bovine teeth were embedded into acrylic blocks and randomly divided into seven groups according to surface treatments using Er,Cr:YSGG lasers with different parameters: 3 W/20 Hz, 3 W/35 Hz, 3 W/50 Hz, 1.5 W/20 Hz, 1.5 W/35 Hz, 1.5 W/50 Hz, or no laser treatment (n = 5). Composite buildups were done over bonded surfaces and stored in water (24 hours at 37°C). Specimens were sectioned into sticks that were subjected to μTBS testing and observed under FE‐SEM. Control groups (27.70 ± 7.0) showed statistically higher values than laser‐irradiated groups. There were no significant differences among laser groups. Despite that, increasing the pulse frequency yielded slightly higher bond strength. Depending on laser settings, Er,Cr:YSGG laser irradiation caused interfacial gaps and resin tags with wings morphology. With the parameters used in this study, Er,Cr:YSGG laser irradiation promoted morphological changes within resin‐dentin interfaces and negatively influenced the bond strength of adhesive systems. Microsc. Res. Tech. 78:1104–1111, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
The aim of this study was to evaluate the effects of different power parameters of an Erbium, Cromium: Yttrium, Scandium, Gallium, Garnet laser (Er,Cr:YSGG laser) on the morphology, attachment of blood components (ABC), roughness, and wear on irradiated root surfaces. Sixty‐five incisive bovine teeth were used in this study, 35 of which were used for the analysis of root surface morphology and ABC. The remaining 30 teeth were used for roughness and root wear analysis. The samples were randomly allocated into seven groups: G1: Er,Cr:YSGG laser, 0.5 W; G2: Er,Cr:YSGG laser, 1.0 W; G3: Er,Cr:YSGG laser, 1.5 W; G4: Er,Cr:YSGG laser, 2.0 W; G5: Er,Cr:YSGG laser, 2.5 W; G6: Er,Cr:YSGG laser, 3.0 W; G7: scaling and root planning (SRP) with manual curettes. The root surfaces irradiated by Er,Cr:YSGG at 1.0 W and scaling with manual curettes presented the highest degrees of ABC. The samples irradiated by the Er,Cr:YSGG laser were rougher than the samples treated by the manual curette, and increasing the laser power parameters caused more root wear and greater roughness on the root surface. The Er,Cr:YSGG laser is safe to use for periodontal treatment, but it is not appropriate to use irradiation greater than 1.0 W for this purpose. Microsc. Res. Tech. 78:529–535, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
The regeneration of periodontal support is a main concern in periodontal therapy. This study aims to investigate the efficacy of Er, Cr:YSGG laser and EDTA based conditioning in attachment of fibroblast on root surfaces. This in vitro study was conducted on 81 root plates (6 mm × 4 mm × 1 mm) prepared from 27 single‐rooted human mature teeth. The samples were divided into three groups: (1) Er, Cr: YSGG laser conditioning with a G6 tip (2.78 µm, 0.75 W, pulse duration of 140 µs, repetition rate of 20 Hz) for 5–7 s; (2) EDTA conditioning (17%, pH: 8) for 1 min; and (3) the control group which were exposed neither to EDTA nor laser. The viability and proliferation rates assessments were performed using MTT assay on days 3 and 5. In addition, the level of cell attachment was studied using scanning electron microscopy. The data indicated Er, Cr:YSGG conditioning increased cell viability by lapse of time (from days 3–5), with significantly better cell attachment compared to the other groups on days 3 and 5 (P < 0.05). In addition, increasing cell attachment in the EDTA conditioning group compared with the control group was statistically significant on day 5 but not on day 3 (P < 0.05). In conclusion, Er, Cr:YSGG laser conditioning can promote enhance fibroblast attachment on dentinal root surfaces more than EDTA. Microsc. Res. Tech. 78:317–322, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
This study evaluated the effect of Er,Cr:YSGG laser on the root canal dentin after luting a fiber post. Twenty‐four bovine teeth roots were prepared using NiTi instruments and filled with Sealer 26 and gutta‐percha. Post spaces were prepared and roots were distributed according to dentin treatment (n = 8): 2.5%NaOCl (group control), Er,Cr:YSGG laser (1.5 W, 20 Hz, 20 s) (group test 1) or 2.5%NaOCl + Er,Cr:YSGG laser (group test 2). Fiber posts were luted using adhesive cement (Rely X U200, 3M) and roots were prepared to confocal laser scanning microscopy (CLSM) and scanning electron microscope (SEM). The morphology of interface, thickness of cement, and the gaps and tags were analyzed. Non‐parametrical data for thickness of cement were submitted to Friedman and Kruskall–Wallis tests (α = 0.05) and parametrical data for gaps to ANOVA (α = 0.05). CLSM of the cement thickness and gaps revealed no significant difference in surface treatment (NaOCl, Er,Cr:YSGG laser and NaOCl + Er,Cr:YSGG laser) (p > .05) and canal thirds (cervical, middle, and apical) (p > 0.05). SEM showed tags and a residual layer of cement adhered to dentin, mainly in laser‐irradiated specimens. The pretreatment of root canal with Er,Cr:YSGG laser previously to luting the fiber post with a self‐adhesive cement did not influence the cement thickness and gaps but affected the dentin interaction.  相似文献   

5.
Preservation of enamel during composite veneer restorations of fluorosed teeth could be achieved by conservative preparation with Erbium lasers. This study evaluated the effect of fluorosed enamel preparation with Er,Cr:YSGG vs. conventional diamond bur on the micromorphology and bond strength of a self‐etch and an etch‐and‐rinse adhesives. Er,Cr:YSGG laser or diamond bur preparation was performed on the flattened midbuccal surfaces of 70 extracted human premolars with moderate fluorosis (according to Thylstrup and Fejerskov index, TFI = 4–6). Adper Single Bond (SB) with acid etching for 20 or 40 s and Clearfil SE Bond (SEB) alone or with additional etching was applied in four laser groups. The same adhesive procedures were used in three bur groups except for 40 s of etching along with SB. After restoration, microshear bond strength was measured (MPa). Data were analyzed using ANOVA and Tamhane tests (α = 0.05). Six additional specimens were differently prepared and conditioned for scanning electron microscopy evaluation. The highest and lowest bond strengths were obtained for bur‐prepared/SB (39.5) and laser‐prepared/SEB (16.9), respectively, with a significant difference (P = 0.001). The different adhesive procedures used associated to two adhesives exhibited insignificantly lower bonding in laser‐prepared groups compared to bur‐prepared ones (P > 0.05), with the exception of additional etching/SEB, which bonded significantly higher to bur‐prepared (36.4) than to laser‐prepared enamel (18.7, P = 0.04). Morphological analyses revealed a delicate etch pattern with exposed enamel prisms on laser‐prepared fluorosed enamel after acid etching and less microretentive pattern after self‐etching primer. The etch‐and‐rinse adhesive was preferred in the laser‐prepared fluorosed enamel in terms of bonding performance. Microsc. Res. Tech. 77:779–784, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
This study aimed to evaluate the microleakage of a universal adhesive's different application modes incorporated with Er,Cr:YSGG laser on Class V resin composite restorations. Sound human molar teeth (n = 30) were used for microleakage evaluations. Specimens with 60 standardized Class V cavities were divided into five groups according to the adhesive modes of universal adhesive, Adhese Universal (n = 12). Group 1‐etch‐and‐rinse mode with phosphoric acid; Group 2‐etch‐and‐rinse mode with Er,Cr:YSGG laser; Group 3‐selective‐etch mode with phosphoric acid; Group 4‐selective‐etch mode with Er,Cr:YSGG laser; Group 5‐self‐etch. After restorations were performed with a resin composite, Tetric N‐Ceram, the specimens were polished and subjected to thermocycling (10,000X). Following immersion in 0.5% basic fuschin for a day, the teeth were sectioned and the degree of microleakage was determined along the tooth‐resin composite interface using a light microscopy(40X). Five specimens from each group were examined by scanning electron microscopy. The Kruskal–Wallis, Siegel Castello, and Wilcoxon tests were used for statistical analyses (α = .05). At the enamel margins, significant differences were obtained among the groups (p < .05). Significantly higher microleakage scores were detected in Group 5 in comparison with Groups 1, 2, and 3. There were no significant differences between different adhesive strategies at the dentin margins (p > .05). While analyzing enamel and dentin microleakage scores, no statistically significant differences were observed in Groups 4 and 5 (p > .05). The laser application time and the adhesive modes of universal adhesives could affect the microleakage at the enamel margins. Different adhesive modes of universal adhesives combined with laser etching had no influence on the microleakage scores of dentin margins.  相似文献   

7.
Dentin irradiation with erbium lasers has been reported to alter the composite resin bond to this treated surface. There is still a lack of studies reporting the effect of erbium lasers on dentin organic content and elucidating how laser treatment could interfere in the quality of the resin-dentin interface. This study aimed to evaluate the effect of erbium laser irradiation on dentin morphology and microtensile bond strength (μTBS) of an adhesive to dentin. Seventy-two dentin disks were divided into nine groups (n = 8): G1-Control (600-grit SiC paper); Er:YAG groups: G2- 250 mJ/4 Hz; G3- 200 mJ/4 Hz; G4- 180 mJ/10 Hz; G5- 160 mJ/10 Hz; Er,Cr:YSGG groups: G6- 2 W/20 Hz; G7- 2.5 W/20 Hz; G8- 3 W/20 Hz; G9- 4 W/20 Hz. Specimens were processed for cross-sectional analysis by scanning electron microscopy (SEM) (n = 3), transmission electron microscopy (TEM) (n = 2), and adhesive interface (n = 3). Forty-five dentin samples (n = 5) were restored and submitted to μTBS testing. ANOVA (α = 5%) revealed that G1 presented the highest μTBS values and irradiated groups did not differ from each other. TEM micrographs showed a superficial layer of denatured collagen fibrils. For SEM micrographs, it was possible to verify the laser effects extending to dentin subsurface presenting a rough aspect. Cross-sectional dentin micrographs of this hybridized surface revealed a pattern of modified tags with ringlike structures around it. This in vitro study showed that erbium laser irradiation interacts with the dental hard tissue resulting in a specific morphological pattern of dentin and collagen fibrils that negatively affected the bond strength to composite resin.  相似文献   

8.
Universal adhesives have been recently introduced for use as self‐etch or etch‐and‐rinse adhesives depending on the dental substrate and clinical condition. However, their bonding effectiveness to laser‐irradiated enamel is still not well‐known. Thus, the aim of this study was to compare the shear bond strength (SBS) of universal adhesives (Single Bond Universal; Nova Compo‐B Plus) applied to Er,Cr:YSGG laser‐irradiated enamel with SBS of the same adhesives applied in self‐etch and acid‐etching modes, respectively. Crown segments of sixty bovine incisors were embedded into standardized acrylic blocks. Flattened enamel surfaces were prepared. Specimens were divided into six groups according to universal adhesives and application modes randomly (n = 10), as follows: Single Bond Universal/acid‐etching mode; Nova Compo‐B Plus/acid‐etching mode; Single Bond Universal/self‐etching mode; Nova Compo‐B Plus/self‐etching mode; and Single Bond Universal/Er,Cr:YSGG Laser‐etching mode; Nova Compo‐B Plus/Er,Cr:YSGG Laser‐etching mode. After surface treatments, universal adhesives were applied onto surfaces. SBS was determined after storage in water for 24 h using a universal testing machine with a crosshead speed of 0.5 mm min?1. Failure modes were evaluated using a stereomicroscope. Data was analyzed using two‐way of analyses of variances (ANOVA) (p = 0.05). Two‐way ANOVA revealed that adhesive had no effect on SBS (p = 0.88), but application mode significantly influenced SBS (p = 0.00). Acid‐etching significantly increased SBS, whereas there are no significant differences between self‐etch mode and laser‐etching for both adhesives. The bond strength of universal adhesives may depend on application mode. Acid etching may significantly increase bond strength, while laser etching may provide similar bond strength when compared to self‐etch mode.  相似文献   

9.
Several scientific reports have shown the effects of Er:YAG laser irradiation on enamel morphology. However, there is lack of information regarding the morphological alterations produced by the acid attack on the irradiated surfaces. The aim of this study was to evaluate the morphological changes produced by acid dissolution in Er:YAG laser irradiated dental enamel. Forty‐eight enamel samples were divided into four groups (n = 12). GI (control); Groups II, III, and IV were irradiated with Er:YAG at 100 mJ (12.7 J/cm2), 200 mJ (25.5 J/cm2), and 300 mJ (38.2 J/cm2), respectively, at 10 Hz without water irrigation. Enamel morphology was evaluated before‐irradiation, after‐irradiation, and after‐acid dissolution, by scanning electron microscopy (SEM). Sample coating was avoided and SEM analysis was performed in a low‐vacuum mode. To facilitate the location of the assessment area, a reference point was marked. Morphological changes produced by acid dissolution of irradiated enamel were observed, specifically on laser‐induced undesired effects. These morphological changes were from mild to severe, depending on the presence of after‐irradiation undesired effects. Microsc. Res. Tech. 77:410–414, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
The purpose of this in vitro study was to evaluate the interaction pattern of adhesive systems on laser and bur cavities. Cavities were prepared according to the following groups (n=9): (G1) conventional diamond bur (No. 1013); (G2) Er:YAG laser (250 mJ, 4 Hz, 80.6 J/cm2); (G3) Er,Cr:YSGG laser (3.5 W, 20 Hz, 61.7 J/cm2). After cavity preparation, specimens were divided into three subgroups differing the adhesive systems used (n=3): (GA) AdheSE; (GB) Clearfil standard error (SE) Bond; (GC) Single Bond. After insertion of a micro-hybrid composite resin, the specimens were sectioned across the bonded surface dividing the teeth into two halves, which were prepared for SEM analysis. Cavities prepared with laser appeared to be more irregular than the bur cavities. Different patterns of gap formation and resin tags could be observed, showing the differences, advantages, and disadvantages of both types of cavities. Under the settings of the present study, resin tags were more pronounced in lased dentin than bur prepared dentin independently of the bonding systems used. On the other hand gap formation between dentin and resin in laser prepared cavities was observed suggesting collagen alteration.  相似文献   

11.
The purpose of this study was to comparatively evaluate the effects of different caries removal methods on microleakage success of class V adhesive restorations by means of light microscopy (stereomicroscope) and scanning electron microscopy (SEM) observations. Sixty‐four human teeth with class V caries that measured with DIAGNOdent were used. The samples were divided into four groups (n = 16) randomly according to caries removing methods of conventional method, Carisolv, Papacarie, and Er,Cr:YSGG laser system. The self‐etch Clearf?l SE Bond and Clearf?l Majesty Es‐II were used as restoration materials. After thermal cycles of 2,000 (5 and 55°C) samples were immersed in a 50% wt/wt AgNO3. Samples were finally imaged and scored under light microscopy and SEM, respectively. The data were statistically analyzed using Kruskal–Wallis H, pairwise comparison and Wilcoxon's T tests at 5% significance level (p < .05). Statistical analysis demonstrated that there was no significant difference between microleakage scores in dentin regions but there were significant difference between the Papacarie and Er,Cr:YSGGlaser in terms of leakage scores in enamel sites. No statistically significant difference in leakage scores emerged between light microscopy and SEM.  相似文献   

12.
BACKGROUND: Depending on the distance of laser tip to dental surface a specific morphological pattern should be expected. However, there have been limited reports that correlate the Er:YAG irradiation distance with dental morphology. PURPOSE: To assess the influence of Er:YAG laser irradiation distance on enamel morphology, by means of scanning electron microscopy (SEM). METHODS: Sixty human third molars were employed to obtain discs (approximately =1 mm thick) that were randomly assigned to six groups (n=10). Five groups received Er:YAG laser irradiation (80 mJ/2 Hz) for 20 s, according to the irradiation distance: 11, 12, 14, 16, or 17 mm and the control group was treated with 37% phosphoric acid for 15 s. The laser-irradiated discs were bisected. One hemi-disc was separated for superficial analysis without subsequent acid etching, and the other one, received the phosphoric acid for 15 s. Samples were prepared for SEM. RESULTS: Laser irradiation at 11 and 12 mm provided an evident ablation of enamel, with evident fissures and some fused areas. At 14, 16 and 17 mm the superficial topography was flatter than in the other distances. The subsequent acid etching on the lased-surface partially removed the disorganized tissue. CONCLUSIONS: Er:YAG laser in defocused mode promoted slight morphological alterations and seems more suitable for enamel conditioning than focused irradiation. The application of phosphoric acid on lased-enamel surface, regardless of the irradiation distance, decreased the superficial irregularities.  相似文献   

13.
The use of Er:YAG laser for cavity preparation: an SEM evaluation   总被引:1,自引:0,他引:1  
OBJECTIVE: The purpose of this study was to evaluate morphological changes in cavities prepared by the Er:YAG laser (2.94 mum) at different parameters of irradiation and by a diamond bur. EXPERIMENTAL DESIGN: Cavities were prepared on 27 human molars (n = 3): G1, 15 Hz/160 mJ enamel/6 Hz/200 mJ dentin; G2, 15 Hz/180 mJ enamel/6 Hz/200 mJ dentin; G3, 15 Hz/160 mJ enamel/6 Hz/250 mJ dentin; G4, 15 Hz/180 mJ enamel/6 Hz/250 mJ dentin; G5, 15 Hz/180 mJ enamel/10 Hz/180 mJ dentin; G6, 15 Hz/160 mJ enamel/10 Hz/180 mJ dentin; G7, 15 Hz/160 mJ enamel/10 Hz/160 mJ dentin; G8, 15 Hz/180 mJ enamel/10 Hz/160 mJ dentin; G9, diamond bur. For SEM analysis, samples were fixed (2.5% glutaraldheyde, 12 h, 4 degrees C), dehydrated (25-100% ethanol), dried, and sputter-coated with gold. RESULTS: Despite the changes on energy and repetition-rate settings, all laser-treated samples showed no evidence of thermal damage or signs of burning and melting. Er:YAG laser ablated dental hard tissues showed exposed enamel prisms, dentin surface without smear layer, and opened dentinal tubules. CONCLUSION: Different Er:YAG laser parameters were effective for ablation of hard tissues, creating an irregular and microretentive morphological pattern without hard tissue damage.  相似文献   

14.
Laser irradiation has been proposed as a preventive method against dental caries since it is capable to inhibit enamel demineralization by reducing carbonate and modifying organic matter, yet it can produce significant morphological changes. The purpose of this study was to evaluate the influence of Er:YAG laser irradiation on superficial roughness of deciduous dental enamel and bacterial adhesion. Fifty‐four samples of deciduous enamel were divided into three groups (n = 18 each). G1_control (nonirradiated); G2_100 (7.5 J/cm2) and G3_100 (12.7 J/cm2) were irradiated with Er:YAG laser at 7.5 and 12.7 J/cm2, respectively, under water irrigation. Surface roughness was measured before and after irradiation using a profilometer. Afterwards, six samples per group were used to measure bacterial growth by XTT cell viability assay. Adhered bacteria were observed using confocal laser scanning microscopy (CLSM) and a scanning electron microscopy (SEM). Paired t‐, one‐way analysis of variance (ANOVA), Kruskal‐Wallis and pairwise Mann–Whitney U tests were performed to analyze statistical differences (p < .05). Before treatment, samples showed homogenous surface roughness, and after Er:YAG laser irradiation, the surfaces showed a significant increase in roughness values (p < .05). G3_100 (12.7 J/cm2) showed the highest amount of Streptococcus mutans adhered (p < .05). The increase in the roughness of the tooth enamel surfaces was proportional to the energy density used; the increase in surface roughness caused by laser irradiation did not augment the adhesion of Streptococcus sanguinis; only the use of the energy density of 12.7 J/cm2 favored significantly the adhesion of S. mutans.  相似文献   

15.
This study reports the effects on micromorphology and temperature rise in human dentin using different frequencies of Er:YAG laser. Sixty human dentin fragments were randomly assigned into two groups (n = 30): carious or sound dentin. Both groups were divided into three subgroups (n = 10), according to the Er:YAG laser frequency used: 4, 6, or 10 Hz (energy: 200 mJ; irradiation distance: 12 mm; and irradiation time: 20 s). A thermocouple adapted to the tooth fragment recorded the initial temperature value (°C); then, the temperature was measured after the end of the irradiation (20 s). Morphological analysis was performed using images obtained with scanning electron microscope. There was no difference between the temperatures obtained with 4 and 6 Hz; the highest temperatures were achieved with 10 Hz. No difference was observed between carious and sound dentin. Morphological analyses revealed that all frequencies promoted irregular surface in sound dentin, being observed more selectively ablation especially in intertubular dentin with tubule protrusion. The caries dentin presented flat surface for all frequencies used. Both substrates revealed absence of any signs of thermal damage. It may be concluded that the parameters used in this study are capable to remove caries lesion, having acceptable limits of temperature rise and no significant morphological alterations on dentin surface. Microsc. Res. Tech. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
The purpose of this study was to compare total‐etch, self‐etch, and selective etching techniques on the marginal microleakage of Class V composite restorations prepared by Er:YAG laser and bur. Class V cavities prepared on both buccal and lingual surfaces of 30 premolars by Er:YAG laser or bur and divided into six groups. The occlusal margins were in enamel, and the cervical margins were in cementum. Group‐1: bur preparation(bp)+Adper Single Bond 2 (ASB)+Filtek Z550 (FZ); Group‐2: laser preparation(lp)+(ASB)+(FZ); Group‐3: bp + Clearfil S3 Bond Plus (CSBP)+(FZ); Group‐4: lp+(CSBP) (FZ); Group‐5: bp + acid etching+(CSBP)+(FZ); Group‐6: lp + acid etching+(CSBP)+(FZ). All teeth were stored in distilled water at 37°C for 24 hr, and then thermocycled 1000 times (5–55°C). Five teeth from each group were chosen for the microleakage investigation, and two teeth for the scanning electron microscope evaluation. Teeth which were prepared for the microleakage test were immersed in .5% methylene blue dye for 24 hr. After immersion, the teeth were sectioned and observed under a stereomicroscope for dye penetration. Data were analyzed using Kruskal–Wallis and Mann–Whitney U tests (p < .05). More microleakage was observed in the cervical regions compared to the occlusal regions in Groups 3, 5, and 6, respectively (p < .05). There is no statistically significant difference in Groups 1, 2, and 4, in terms of cervical regions versus occlusal regions (p > .05). No significant differences were observed among any groups in terms of occlusal and cervical surfaces, separately (p > .05). Different etching techniques did not influence microleakage of Class V restorations prepared by Er:YAG laser and bur.  相似文献   

17.
The purpose of this study was to assess the influence of Er:YAG laser pulse repetition rate on the thermal alterations occurring during laser ablation of sound and demineralized primary dentin. The morphological changes at the lased areas were examined by scanning electronic microscopy (SEM). To this end, 60 fragments of 30 sound primary molars were selected and randomly assigned to two groups (n = 30); namely A sound dentin (control) and B demineralized dentin. Each group was divided into three subgroups (n = 10) according to the employed laser frequencies: I-4 Hz; II-6 Hz, and III-10 Hz. Specimens in group B were submitted to a pH-cycling regimen for 21 consecutive days. The irradiation was performed with a 250 mJ pulse energy in the noncontact and focused mode, in the presence of a fine water mist at 1.5 mL/min, for 15 s. The measured temperature was recorded by type K thermocouples adapted to the dentin wall relative to the pulp chamber. Three samples of each group were analyzed by SEM. The data were submitted to the nonparametric Kruskal-Wallis test and to qualitative SEM analysis. The results revealed that the temperature increase did not promote any damage to the dental structure. Data analysis demonstrated that in group A, there was a statistically significant difference among all the subgroups and the temperature rise was directly proportional to the increase in frequency. In group B, there was no difference between subgroup I and II in terms of temperature. The superficial dentin observed by SEM displayed irregularities that augmented with rising frequency, both in sound and demineralized tissues. In conclusion, temperature rise and morphological alterations are directly related to frequency increment in both demineralized and sound dentin.  相似文献   

18.
The aim of the study was to evaluate the adhesion of a self‐adhering flowable composite resin to primary tooth enamel and dentin after silicon carbide paper (SiC) and laser pretreatment. Adhesive properties were evaluated as shear bond strength (SBS) and scanning electron microscopic (SEM) characteristics. A total 120 primary canine teeth were randomly divided into two groups to study enamel and dentin. Each group was divided into 6 subgroups (n = 10) according to type of surface preparation (SiC or Er:YAG laser) of enamel or dentin. Three methods were used to build cylinders of restoration on tooth surface: OptiBond All‐In‐One + Premise Flowable composite, OptiBond All‐In‐One + Vertise Flow and Vertise flow. After restoration, samples were tested for SBS and failure mode. Twenty eight samples were examined by SEM. The results of the study showed SBS of Vertise Flow was lower than others in enamel and dentin samples pretreated with SiC and in dentin samples pretreated with laser (P < 0.001). Compared to SiC pretreatment, laser pretreatment led to a significantly higher SBS with Vertise Flow on enamel (P < 0.001). Vertise Flow associated with the adhesive led to a higher SBS in enamel and dentin compared to Vertise Flow alone. Adhesive and mixed failure modes were observed more frequently in Vertise Flow groups. SEM images showed that Vertise Flow led to more irregularities on enamel and more open dentinal tubules after laser ablation compared SiC pretreatment. Microsc. Res. Tech. 79:334–341, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
The erbium:yttrium–aluminum–garnet (Er:YAG) laser may be effective the bond strength of adhesive systems on dentine surfaces, the chemical composition and aggressiveness of adhesive systems in clinical practice. The purpose of this study was to evaluate the effects of the Er:YAG laser system with the bonding ability of two different self‐etching adhesives to caries‐affected dentine in primary molars. Ninety mid‐coronal flat dentine surfaces obtained from sound and caries‐affected human primary dentine were treated with an Er:YAG laser or a bur. The prepared surfaces were restored with an adhesive system (Xeno V; Clearfil S3) and a compomer (Dyract Extra). The restored teeth were sectioned with a low‐speed saw and 162 samples were obtained. The bond strength of the adhesive systems was tested using the micro‐tensile test method. The data were statistically analyzed. A restored tooth in each group was processed for scanning electron microscopy evaluation. The values of the highest bond strength were obtained from the Clearfil S3‐Er:YAG laser‐sound dentine group in all groups. (24.57 ± 7.27 MPa) (P > 0.05). The values of the lowest bond strength were obtained from the Xeno V‐Er:YAG laser‐sound dentine group in all groups (11.01 ± 3.89 MPa). It was determined that the Clearfil S3 increased the bond strength on the surface applied with Er:YAG laser according to the Xeno V. Microsc. Res. Tech. 77:282–288, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
This study aimed to assess the in vitro efficacy of the lasers Er:YAG, Nd:YAG, and CO(2) operating in the low energy mode for caries prevention in pits and fissures. Forty-five caries-free enamel occlusal sections were randomly divided into three groups: G1 - Er:YAG (80 mJ/2 Hz); G2 - Nd:YAG Laser (1 W and 10 Hz); and G3 - CO(2) Laser (0.4 W and 20 Hz). After surface treatment, the samples were submitted to challenge with acid consisting of a 10-day immersion in demineralizing (6 h) and remineralizing solution (18 h). Next, enamel demineralization was quantitatively evaluated by subsurface microhardness test and polarized-light microscopy (PLM, mm(2)) and qualitatively assessed by scanning electron microscopy. The Wilcoxon test was used for comparison of each group with its own control. ANOVA (α = 5%) was employed for comparison among groups, and Fisher's LSD multiple comparison test was applied, to check the difference in means. Concerning the microhardness analyses, statistical difference between control, and experimental areas was only detected for the CO(2) group. Experimental values were higher than the controls. As for PLM analyses, smaller demineralized areas were measured for G2 (Nd:YAG) and G3 (CO(2)) compared with the control areas. In conclusion, the present findings suggest that the CO(2) laser should be selected in order to increase the enamel resistance to acid in pits and fissures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号