首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
为了提高C/C复合材料的抗烧蚀性能,通过等离子喷涂法在C/C表面制备了SiC/Al2O3内层和ZrB2/SiC/Ta2O5外层的双层涂层,通过XRD,SEM和EDS分析了涂层烧蚀前后的物相组成、微观结构和成分分布。烧蚀前涂层表面没有裂纹并且内层与基体、内层与外层之间结合良好。元素Zr、Si、Ta在涂层表面的分布相近,涂层表面成分分布均匀性良好。通过氧乙炔火焰在1800 ℃下对涂层的抗烧蚀性能进行考核。烧蚀过程中形成的镶嵌结构有利于阻挡氧气的渗入,Ta-Si-O玻璃层的形成封填了涂层孔隙,对基体有良好的保护效果,涂层表现出了较好的抗烧蚀性能。  相似文献   

2.
采用喷涂工艺在烧结钕铁硼磁体表面制备了不同纳米 CeO2 掺杂量的 CeO2 / Zn-Al 复合涂层。 利用扫描电子显微镜、显微硬度仪、盐雾试验箱和电化学工作站对 CeO2 / Zn-Al 复合涂层的微观结构、力学性能及耐腐蚀性能进行表征分析。 结果表明:CeO2 纳米颗粒较均匀弥散分布于 Zn-Al 涂层中,不仅能够增加 Zn-Al 涂层的硬度,而且可以提高 Zn-Al 涂层的屏蔽性能,CeO2 / Zn-Al 复合涂层耐中性盐雾试验能力高达 720 h。 添加的 CeO2 颗粒能够隔绝 Zn-Al 涂层中的锌铝薄片之间的直接接触,起到绝缘作用,延长了腐蚀介质渗入钕铁硼基体的腐蚀通道。  相似文献   

3.
采用磁控溅射技术于γ-TiAl合金表面制备Al2O3/Al复合涂层。在850 °C下、 100 wt.% Na2SO4熔盐中观测Al2O3/Al复合涂层的高温腐蚀行为。结果表明,Al2O3/Al复合涂层具备由Al2O3表层、富Al中间层以及互扩散层组成的梯度结构,因而有效地提高了基体γ-TiAl合金的抗高温腐蚀性能。在腐蚀实验后,涂层试样表面相结构为Al2O3,TiO2和TiAl3。致密的Al2O3/Al复合涂层有效地抑制了O2-,S-和Na+对基体γ-TiAl合金的侵蚀。并且,Al2O3/Al复合涂层的梯度结构亦使其表现出了优异的抗开裂和抗剥落性能。  相似文献   

4.
为提高Ti6Al4V合金的高温抗氧化性能,以Ni-48%Mo-32%Si混合粉末为原料,采用激光熔覆技术在Ti6Al4V合金表面制备复合涂层,分析涂层物相、组织结构、高温抗氧化性能及抗磨损性能,并讨论相关机理。结果表明:复合涂层中无裂纹,与基体实现了良好的冶金结合;硬质相Ti5Si3、MoSi2和Mo5Si3均匀分布于基体α-Ti、NiTi中。经恒温800 ℃氧化100 h后,复合涂层的氧化膜主要由TiO2、SiO2和NiO组成,结构连续致密,表现出较好的高温抗氧化性能。而Ti6Al4V合金氧化膜主要为疏松TiO2,表面氧化严重;氧化后,复合涂层和基体的单位面积增重分别为1.31和23.38 mg/cm2;复合涂层和基体的摩擦因数分为0.44和0.52、磨损率分别为16.2×10-5和22.6×10-5mm3/Nm,复合涂层的摩擦学性能亦有明显提高。  相似文献   

5.
为了提高AISI 304不锈钢的高温抗氧化性及耐磨性,利用转移等离子弧熔敷技术在AISI 304基材表面制备了TiC-MoSi2复合相增强复合涂层。对比分析了氧化前后复合涂层的显微组织,测试了复合涂层的显微硬度分布,测试并拟合了复合涂层的氧化动力学曲线,探讨了复合涂层的氧化机理。结果表明:复合涂层典型显微组织由TiC-MoSi2复合相、初生TiC枝晶和γ-(Ni,Fe)/NiSi2共晶构成,TiC-MoSi2复合相和初生TiC枝晶作为复合涂层的增强相均匀分布在γ-(Ni,Fe)/NiSi2共晶基体上。由于TiC-MoSi2复合相的增强作用以及超细γ-(Ni,Fe)/NiSi2共晶基体的粘结和支撑作用,复合涂层具有高且均匀的硬度分布、良好的强度和韧性。得益于独特的显微组织,复合涂层表现出良好的高温抗氧化性。  相似文献   

6.
采用包埋法和涂刷法在C/C复合材料表面依次制备了SiC内涂层和SiC--MoSi2外涂层, 借助XRD与SEM对涂层的微观结构进行了分析, 研究了涂覆后的C/C复合材料在高温静态空气中的防氧化性能. 结果表明: SiC/SiC--MoSi2复合涂层有效缓解了MoSi2与C/C热膨胀不匹配问题, 涂层无裂纹; 复合涂层在900和1500℃静态空气环境下均可对C/C复合材料有效保护100 h以上; 涂层的多层、多相结构以及在高温氧化后表面生成的SiO2薄膜是其具有优异防氧化性能的原因.  相似文献   

7.
采用多弧离子镀技术在Ti-6Al-4V合金基底表面依次沉积Al层和NiCrAlY涂层,对比研究Ti-6Al-4V合金和NiCrAlY/Al复合涂层在高温腐蚀 (500 ℃, 30 h) 过程中微观组织结构变化及其抗高温腐蚀性能。经测定,NiCrAlY/Al复合涂层中Al层的厚度约为270 nm,NiCrAlY涂层的厚度约为3.8 μm。高温腐蚀测试结果显示,Ti-6Al-4V合金表面出现点蚀,腐蚀区域出现大量裂纹,表明合金发生严重的高温腐蚀。表面沉积NiCrAlY/Al复合涂层的Ti-6Al-4V合金经高温腐蚀后表面依然完整,未产生明显裂纹和涂层脱落。经分析,NiCrAlY/Al复合涂层在高温腐蚀过程中表面可自形成厚度约为43 nm的Al2O3和Cr2O3,连续且致密的薄氧化膜可在高温下阻隔氧气向钛合金内部的侵蚀,从而显著提高基底合金的抗高温腐蚀性能。  相似文献   

8.
传统的等离子喷涂热障涂层在高温环境下服役易受熔融腐蚀盐渗透而过早剥落失效,研究激光合金化掺杂自愈合材料 TiC 对热障涂层热腐蚀行为的影响具有重要意义。采用大气等离子喷涂技术(Atmospheric plasma spray,APS)在 Inconel 718 镍基高温合金表面制备 NiCrAlY 粘结层,采用大气等离子喷涂技术在 NiCrAlY 粘结层上制备 8 wt.%氧化钇部分稳定的氧化锆(8 wt.% yttria partially stabilized zirconia,8YSZ)陶瓷层,构建典型双层结构热障涂层体系。采用 1 kW 光纤耦合激光器将自愈合材料 TiC 熔于 8YSZ 热障涂表层,并考察其在 900 ℃下 25%NaCl+75%Na2SO4混合熔盐中保温 4 h 的热腐蚀行为。结果表明,与等离子喷涂涂层相比,激光合金化改性热障涂层表面更加光滑,分布有网状裂纹,且结构致密。等离子喷涂涂层的热腐蚀产物主要是针状颗粒 Y2(SO4)3 和 m-ZrO2,但仅有较少的热腐蚀盐渗透至激光合金化改性热障涂层内部,其热腐蚀产物为 Y2(SO4)3 和少量的 TiO2。激光合金化改性热障涂层的抗热腐蚀性能较等离子喷涂态热障涂层提升 55.5%,一方面激光合金化改性层组织致密,可阻止热腐蚀盐渗透至涂层内部,另一方面,激光合金化改性热障涂层表面粗糙度更低,能减少与热腐蚀盐的接触面积。此外,自愈合材料 TiC 在高温下发生氧化反应引起体积膨胀,实现裂纹的部分自愈合效应,进一步阻止了热腐蚀反应的发生。采用激光表面改性技术将自愈合材料 TiC 引入热障涂层,激光合金化改性热障涂层不仅具有光滑的表面形貌,还具有致密的微观组织结构;同时自愈合材料 TiC 在高温环境下的裂纹自愈合效应有助于抑制热腐蚀盐的渗透, 最终提高热障涂层的抗热腐蚀性能。  相似文献   

9.
为了探究MnCo2O4尖晶石涂层作为固体氧化物燃料电池的金属连接体表面涂层的性能,使用溶胶-凝胶法制备出纯净的前驱体粉末,再使用电泳沉积方法制备出致密的MnCo2O4尖晶石涂层,利用SEM、EDS和XRD等表征手段观察分析MnCo2O4尖晶石涂层的相结构和微观组织形貌。采用“四探针法”测量MnCo2O4尖晶石涂层800℃氧化200h前后的面比电阻使用拉拔法完成不同界面粗糙度下的涂层结合强度测试,并用有限元仿真加以验证。结果显示,MnCo2O4尖晶石涂层结构均匀,致密度较好。相较于AISI430不锈钢基体来说,在800℃空气中氧化200h,抗氧化性提高了接近3倍。且中温面比电阻小于SOFC金属连接体规定的极限值。此外,基体表面粗糙度可以有效的增加涂层与基体的机械咬合作用,但同时也会导致应力集中,出现缺陷,从而降低了结合强度。  相似文献   

10.
采用等离子喷涂技术在铝基表面构建Al2O3-TiO2涂层和Al2O3-TiO2-Ta涂层。由于钽元素的引入,Al2O3-TiO2-Ta涂层表面形貌更均匀、致密。同时钽金属具有极强的耐酸碱特性,因此,Al2O3-TiO2-Ta涂层相对于Al2O3-TiO2涂层具有更强的耐腐蚀性。Tafel曲线结果显示,Al2O3-TiO2涂层使得基体的腐蚀电位仅正移了99.6 mV,Al2O3-TiO2-Ta涂层使得铝基体腐蚀电位正移了208.9 mV。因此,由于耐蚀性极强的Ta金属的掺入,Al2O3-TiO2涂层的防腐性得到了极大的增强,Al2O3-TiO2-Ta涂层有效地防止铝合金腐蚀。  相似文献   

11.
目的研究Al-TiC涂层组织和性能的特性,以提高镁合金涂层的硬度和耐蚀性能。方法采用Nd:YAG固体激光器,在AZ91D镁合金表面通过激光熔覆制备Al-TiC涂层,采用光学显微镜、X射线衍射仪、显微硬度计、电化学工作站,对熔覆层的组织形貌、物相结构、显微硬度和耐蚀性能进行测定和分析。结果 Al-TiC涂层的主要组成相有AlTi_3(C,N)_(0.6),Al_3Mg_2,Mg_2Al_3,Al和TiC等。激光熔覆层的厚度约为0.35 mm,表面成型良好,结合层晶粒细小,熔覆层与镁合金基体之间结合良好,呈大波浪形。熔覆层试样的平均显微硬度为224HV,约为基体显微硬度(62HV)的4倍,由此表明熔覆层对镁合金硬度有明显的增强作用。镁合金基体的自腐蚀电位为-1.475 V,自腐蚀电流密度为7.556×10~(–5) A/cm~2,熔覆层试样的自腐蚀电位为-1.138V,自腐蚀电流密度为4.828×10~(–5) A/cm~2,与镁合金基体相比,熔覆层的腐蚀电位值增加,腐蚀电流密度值变小,熔覆层的耐蚀性能得到提高。结论采用激光熔覆技术,能够在AZ91D镁合金基体表面制备Al-TiC涂层,由于硬质相AlTi_3(C,N)_(0.6),Al_3Mg_2,Mg_2Al_3,TiC等的存在,熔覆层的显微硬度和耐蚀性能显著提高。  相似文献   

12.
铜合金表面超音速微粒沉积镍基涂层的耐蚀性能研究   总被引:4,自引:4,他引:0  
目的研究铜合金表面镍基合金涂层的耐腐蚀性能,解决铜合金表面腐蚀损伤问题。方法采用超音速微粒沉积技术在黄铜表面制备镍基合金涂层,通过电化学方法和中性盐雾实验对黄铜基体及镍基合金涂层的耐腐蚀性能进行测试。结果涂层的腐蚀电流密度较基体降低了34倍。涂层表面生成的连续且致密的氧化膜阻止了腐蚀的进一步发生,在盐雾腐蚀时间进行到500 h时,腐蚀速度接近于零,涂层腐蚀缓慢。结论超音速微粒沉积技术可以制备耐腐蚀性能优异的镍基合金涂层,并且可以显著提高黄铜的基体耐蚀性。  相似文献   

13.
鲁显京  向志东 《表面技术》2017,46(1):218-223
目的研究在45~#钢表面包埋共渗沉积Cr_2N涂层提高其耐蚀性的可行性。方法采用包渗法,对在1100℃下保温不同时间,得到不同时期的氮铬共渗涂层。利用扫描电镜及能谱仪、X射线衍射仪研究氮铬共渗层的微观组织及其生长机制,利用极化曲线评估涂层耐蚀性能。结果 45~#钢氮铬包埋共渗在保温4 h时可获得最佳涂层,涂层组织为Cr_2N层(约15μm)、Cr的沉积层(约10μm)、Cr的扩散层(约15μm)。Cr_2N层呈现强烈的(002)晶面择优取向;Cr沉积层为Fe-Cr合金及铬的碳化物相(Cr_7C_3,Cr_3C_2)。在模拟燃料电池腐蚀液中,45~#钢、45涂层样品、304不锈钢自腐蚀电位和自腐蚀电流分别为-0.521 V和230.63μA·cm~(-2),-0.448 V和10.89μA·cm~(-2),-0.299 V和5.26μA·cm~(-2)。当腐蚀电位高于0.3 V时,涂层样品会二次钝化,腐蚀电流低至1.43μA·cm~(-2)。结论沉积Cr_2N的45~#钢样品相对原样其耐蚀性有很大提高,并且当腐蚀电位达到0.3 V以上时,其耐蚀性能优于304不锈钢。  相似文献   

14.
为了提高Inconel617合金(简称617合金)材料的表面性能,利用电子束熔覆技术在617合金表面制备了NbMoCr熔覆层. 对它的显微组织、硬度和耐腐蚀性能进行了研究,并与617合金进行了对比. 结果表明,NbMoCr熔覆层的组织更均匀,晶粒更细小,气孔等缺陷更少,且生成了微量M23C6,Cr7C3,Cr4Si4Al13,CoCx等硬质相,提高了熔覆层的表面硬度及耐腐蚀性. 经检测,熔覆层硬度相比617合金硬度高出86 HV10. 电化学腐蚀测试表明,在1 mol/L H2SO4溶液中,617合金自腐蚀电流密度是NbMoCr熔覆层的5.16倍;在3.5 %的NaCl溶液中,617合金自腐蚀电流密度是NbMoCr熔覆层的4.6倍;在1 mol/L NaOH 溶液中,617合金自腐蚀电流密度是NbMoCr熔覆层的3.12倍.  相似文献   

15.
目的通过制备渗硼涂层,提高新型β-钛合金的耐腐蚀性能。方法采用固体粉末包埋法,在空气及氮气气氛中,选取不同的渗硼温度,在Ti-33Nb-4Sn(简称334钛合金)表面渗硼。对比分析涂层的表面、断面形貌,总结渗硼涂层的生长规律。利用电化学测试方法,测定334钛合金制备渗硼涂层前后,在3.5%NaCl溶液中的电化学腐蚀性能。结果在不同的制备条件下,都能在新型β-钛合金表面形成一层致密、连续的渗硼层。该涂层为双层结构,由致密的外涂层和针须状的过渡层组成。在相同气氛下制备的涂层,随着渗硼温度的升高,致密外涂层厚度增加。在氮气气氛下制备的涂层致密外涂层的厚度,大于同温度下在空气中制备的涂层。基体经过不同条件渗硼处理后,开路电位都明显提高。334钛合金基体的自腐蚀电位为0.6692 V,腐蚀电流密度为2.356μA/cm^2。在空气中经过900、950、1000℃温度渗硼后,自腐蚀电位分别为1.0993、0.7221、0.7639 V,腐蚀电流密度分别为3.377、2.274、1.584μA/cm^2。在氮气中经过900、950、1000℃温度渗硼后,自腐蚀电位分别为0.8617、0.6804、0.8143 V,腐蚀电流密度分别为1.358、1.445、1.525μA/cm^2。结论渗硼涂层可提高334钛合金的耐腐蚀性能,氮气气氛下制备涂层的耐腐蚀性能明显优于空气气氛。  相似文献   

16.
目的提高表面ZnAl-LDHs涂层对铝合金的防腐蚀保护性能。方法首先将6061铝合金放入水热反应釜中,加入去离子水,在120℃温度下水热反应30 min。将经过水热预处理的铝合金分别放入50、80℃的0.005 mol/L的Zn(NO3)2溶液中浸泡4 h,在铝合金表面制备出ZnAl-LDHs涂层。利用XRD、SEM、EDS、EIS和极化曲线等技术,分析不同制备条件下,铝合金表面ZnAl-LDHs层的形貌、结构及其对铝合金的防腐蚀保护性能。结果水热预处理后,铝合金表面形成Al(OH)3和AlO(OH)混合层,在其上生长形成的ZnAl-LDHs涂层具有较优的层状结构、较高的结晶度和更加细小致密的纳米片。电化学阻抗和极化曲线的测试结果表明,表面ZnAl-LDHs层可以降低6061铝合金的腐蚀电流密度,提高腐蚀电位和电化学阻抗。水热预处理后的铝合金在80℃溶液中形成的ZnAl-LDHs层,其自腐蚀电流密度(J(corr))仅有0.018μA/cm^2,比未水热处理的铝合金上获得的ZnAl-LDHs层(0.101μA/cm^2)更低,在50℃溶液中形成的ZnAl-LDHs层也观察到相同的现象。结论通过水热预处理可在6061铝合金表面形成Al(OH)3和AlO(OH)混合层,将其作为ZnAl-LDHs层原位生长的前驱体,可以促进ZnAl-LDHs的结晶形核,提高其形核率,使ZnAl-LDHs层的纳米片更细小致密,从而使ZnAl-LDHs层对铝合金具有更好的防腐蚀保护性能。  相似文献   

17.
采用电火花沉积技术在45Mn2钢基材表面沉积了Invar、Invar/非晶及Invar/非晶/Invar涂层,通过X射线衍射仪(XRD)、扫描电镜(SEM)、摩擦磨损试验仪和电化学工作站等分析了沉积层的组织结构、摩擦磨损和电化学腐蚀性能。结果表明,制备的涂层致密、均匀,与基材呈冶金结合。采用Invar合金打底,获得了约60 μm厚度的无显著裂纹Invar/非晶/Invar涂层。Invar涂层为FCC固溶体结构,Invar/非晶和Invar/非晶/Invar涂层为非晶/固溶体复相结构。Invar、Invar/非晶和Invar/非晶/Invar沉积层的平均硬度分别为176.6、 757.7和772.8 HV0.1,摩擦因数分别为0.44、0.21和0.19。提高沉积层非晶含量可提高硬度,降低摩擦因数,提高耐磨性。沉积层在3.5%NaCl溶液中没有明显的钝化现象,Invar、Invar/非晶及Invar/非晶/Invar涂层的自腐蚀电位分别为-0.74、 -0.54、-0.34和-0.31 V,自腐蚀电流密度分别为7.08、5.15、3.78和3.11 μA·cm-2。电火花沉积的Invar/非晶/Invar涂层致密、均匀、无裂纹,可极大提高45Mn2钢基体表面的耐磨及耐蚀性能。  相似文献   

18.
激光熔覆技术具有高的冷却速度、低的稀释率、涂层与基体冶金结合等优点,采用激光熔覆技术制备耐磨性和耐腐蚀好的高熵合金涂层是近几年高熵合金领域的研究热点之一。首先概括了激光熔覆技术制备的高熵合金体系及组织结构特征,大多高熵合金涂层以固溶相为主,少数合金涂层形成了非晶相,与熔炼制备高熵合金块体材料相比,涂层组织具有均匀、细小致密等特点。然后介绍了涂层的性能特征,涂层具有较高的硬度、良好的耐磨性,同时指明高耐磨性涂层不仅具有高的硬度,同时还需要具有一定的塑韧性。涂层合金中大多包含有Al、Cr、Si和Co等形成稳定氧化膜的元素,呈现优异的抗腐蚀性能。随后重点概述了合金元素(Al、Mo、V、Ti、B、Ni、Nb和Cu等)、熔覆工艺参数(激光功率、扫描速度和预制层粉末厚度)和热处理工艺对涂层组织结构和性能的影响规律。其中,熔覆工艺参数对涂层组织结构和性能的影响研究相对较少,将是未来研究的重点内容之一。最后对激光熔覆技术制备高熵合金涂层存在的问题和未来的研究方向做了展望。  相似文献   

19.
AZ91镁合金表面含Ti生物复合涂层结构及腐蚀学性能   总被引:1,自引:0,他引:1  
采用冷喷涂法在AZ91合金表面预置纯Ti涂层,再采用微弧氧化对Ti涂层进行仿生生物改性.用SEM、XRD、EDS等方法分析涂层的组织结构,用动电位法测试涂层的腐蚀学性能.结果表明:冷喷涂预置Ti层厚度约100 μm,外表面形貌粗糙.微弧氧化处理后在Ti层表面产生微弧放电孔.生物改性层主要由Ti_2O_3组成,还含有少量钙、磷等物质.微弧氧化层有利于提高冷喷涂Ti层的生物学活性和致密性.含Ti复合涂层显著提高AZ91合金在模拟体液(SBF)中的自腐蚀电位(提高了约0.3 V),表明含Ti生物复合涂层具有良好的抗腐蚀性能.  相似文献   

20.
针对激光熔覆高熵合金涂层的成分设计已有较多探究,但激光工艺参数对涂层结构与性能的影响尚缺乏系统研究。采用激光熔覆技术在316L不锈钢基体表面制备Fe Co Ni Cr高熵合金涂层,系统探究激光功率(1.2~2.0 kW)对Fe Co Ni Cr高熵合金涂层的组织结构以及耐腐蚀性能的影响规律。不同激光功率制备的Fe Co Ni Cr涂层均由典型的单一面心立方结构(FCC)组成,但随着激光功率的增大,涂层逐渐出现择优取向。Fe Co Ni Cr涂层呈现典型的双层组织结构特征,底部为柱状晶,顶部为等轴晶,但随着激光功率增加,顶部等轴晶逐渐向柱状晶转变。随着激光功率的增加,Fe Co Ni Cr涂层混合熵值逐渐下降。Fe Co Ni Cr涂层具有优异的耐腐蚀性能,但随激光功率的增加而逐渐减弱。其中,当功率为1.2 kW时,涂层的自腐蚀电流密度最小,自腐蚀电压最大且涂层表面无腐蚀坑,具有最佳的耐腐蚀性能,优于316L基体以及Stellite6和Ni60等常规激光熔覆涂层。通过优化激光功率获得具有良好耐腐蚀性能的激光熔覆Fe Co Ni Cr高熵合金涂层,可对该类涂层的开发、制备和应用提供一定的理论指导和技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号