首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
采用微波水热法和水热法制备锂离子电池负极材料Li4Ti5O12,比较了合成方法对Li4Ti5O12电化学性能的影响,考察了其结构和形貌及电化学性能.结果表明,两种方法均合成了尖晶石结构的Li4Ti5O12,微波水热法合成的样品电化学性能较好,颗粒尺寸为200~300 nm,分布均匀,比表面积较大,在1 C的放电条件下,首次放电比容量为151.33 mA·h/g,97次循环后放电比容量为140.94 mA·h/g,保持率为93.14%,且电化学阻抗较小.  相似文献   

2.
以纳米TiO2和LiNO3为原料,尿素为燃料,燃烧法合成了锂离子电池负极材料Li4Ti5O12. 利用XRD、SEM和恒电流充放电、循环伏安和交流阻抗对其进行表征. 结果表明,预设炉温850℃,尿素与锂摩尔比1,焙烧8 h,制备得到平均粒径小于500 nm、粒度分布均匀的纯相尖晶石型结构Li4Ti5O12,并具有良好的电化学性能,具有1.5 V充放电平台,在0.1 C倍率下(1 C=170 mA·h/g),其首次充放电容量达到168 mA·h/g,经过100次循环后放电比容量仍有162 mA·h/g,容量保持率96.4%.  相似文献   

3.
采用高温固相法、热聚合法和改良溶胶-凝胶法制备锂离子电池负极材料Li4Ti5O12。通过X射线衍射、扫描电镜、恒电流充放电及电化学阻抗表征了合成产物的结构、形貌及电化学性能。结果表明,溶胶-凝胶法合成的粉末为纯相Li4Ti5O12,而高温固相法和聚合法合成的Li4Ti5O12则存在TiO2杂相。高温固相法合成的Li4Ti5O12粉末晶粒最大,溶胶-凝胶法合成的粉末晶粒最小,分布最为均匀,晶粒尺寸约为80 nm。高温固相法、热聚合法和溶胶-凝胶法制备的Li4Ti5O12粉末首次放电容量分别为161.6、165.9 mA·h/g和171.5 mA·h/g,循环25次后的容量保持率分别为84.7%、87.7%和94.3%,溶胶-凝胶法合成的Li4Ti5O12粉末电化学性能最好。  相似文献   

4.
利用纳米TiO2颗粒和Li2CO3为原料,分别在不添加及添加中间相沥青的情况下通过固相反应制备出Li4Ti5O12及炭包覆的锂化钛酸锂Li4+x Ti5O12/C。Li4Ti5O12颗粒尺寸在0.5~3μm之间,而Li4+x Ti5O12/C颗粒尺寸比较均匀,在200~500 nm之间,且颗粒表面包覆了一层厚度约2 nm的炭层。充放电研究表明,Li4Ti5O12的可逆容量较低,而Li4+x Ti5O12/C则具有非常高的可逆容量、循环稳定性及容量保持率。同时,Li4+x Ti5O12/C可提供Li+补偿首次不可逆容量损失,导致首次库仑效率超过100%。Li4+x Ti5O12/C中预储锂量随碳源量的增加而增加,在碳源量5%条件下制得的Li4+x Ti5O12/C的首次脱锂容量超过嵌锂容量24.2 mAh·g-1。Li4+x Ti5O12/C有望消除锂离子全电池的首次不可逆容量损失并提高其容量。  相似文献   

5.
利用纳米TiO2颗粒和Li2CO3为原料,分别在不添加及添加中间相沥青的情况下通过固相反应制备出Li4Ti5O12及炭包覆的锂化钛酸锂Li4+x Ti5O12/C。Li4Ti5O12颗粒尺寸在0.5~3μm之间,而Li4+x Ti5O12/C颗粒尺寸比较均匀,在200~500 nm之间,且颗粒表面包覆了一层厚度约2 nm的炭层。充放电研究表明,Li4Ti5O12的可逆容量较低,而Li4+x Ti5O12/C则具有非常高的可逆容量、循环稳定性及容量保持率。同时,Li4+x Ti5O12/C可提供Li+补偿首次不可逆容量损失,导致首次库仑效率超过100%。Li4+x Ti5O12/C中预储锂量随碳源量的增加而增加,在碳源量5%条件下制得的Li4+x Ti5O12/C的首次脱锂容量超过嵌锂容量24.2 mAh·g-1。Li4+x Ti5O12/C有望消除锂离子全电池的首次不可逆容量损失并提高其容量。  相似文献   

6.
共沉淀法合成Li_4Ti_5O_(12)及其性能研究   总被引:1,自引:0,他引:1  
以钛酸丁酯和乙酸锂为原料,采用共沉淀法,制备出尖晶石型Li4Ti5O12。采用XRD对其晶体结构和表面状态进行了表征,对该类材料组装的模拟电池进行了电循环性能测试,并分析了Li4Ti5O12作为电极材料的电性能。结果表明:锂钛原子比为0.83、煅烧温度为800℃、煅烧时间为17 h时,合成的产物具有良好的充放电性能,在室温及0.1 C倍率下,Li4Ti5O12首次放电比容量为138 mA.h/g,循环40次未见明显衰减。  相似文献   

7.
Mg2+、Zr4+离子掺杂对Li4Ti5O12电化学性能的影响   总被引:1,自引:0,他引:1  
以固相反应法合成了尖晶石型Li4Ti5O12电极材料,进行了金属离子掺杂以提高其导电性及综合性能,以适应用于大电流充放电的目的。采用XRD、室温恒流充放电循环、交流阻抗和循环伏安等测试手段,考察了A位掺杂Mg(Li4-xMgxTi5O12,x=0.15),B位掺杂Zr(Li4ZrxTi5-xO12,x=0.15)对Li4Ti5O12结构和电化学性能的影响。结果表明:掺杂少量的Mg2+、Zr4+未引起材料结构的变化,明显降低了Li4Ti5O12电荷转移阻抗,使导电性得到有效提高。0.1 C放电倍率下放电,未掺杂及掺杂Mg2+、Zr4+的Li4Ti5O12首次放电容量分别为159.8、144.9、161.2mAh/g,循环40次后,容量分别保持为113.8、130.6、133.6 mAh/g。与未掺杂的Li4Ti5O12相比,掺杂后的电极材料极化减小、循环容量及稳定性提高。  相似文献   

8.
采用高温固相法、热聚合法和改良溶胶-凝胶法制备锂离子电池负极材料Li4Ti5O12。通过X-射线衍射、扫描电镜、恒电流充放电及电化学阻抗等技术和手段表征合成产物的结构、形貌及电化学性能。结果表明:溶胶-凝胶法合成的粉末为纯相Li4Ti5O12,而高温固相法和聚合法合成的Li4Ti5O12则存在TiO2杂相。高温固相法合成的Li4Ti5O12粉末晶粒最大,溶胶-凝胶法合成的粉末晶粒最小,分布最为均匀,晶粒尺寸约为80nm。高温固相法、热聚合法和溶胶-凝胶法制备的Li4Ti5O12粉末首次放电容量分别为161.6mAh/g、165.9mAh/g和171.5mAh/g,循环25次后的容量保持率分别为84.7%、87.7%和94.3%,溶胶-凝胶法合成的Li4Ti5O12粉末电化学性能最好。  相似文献   

9.
以5V高电压LiNi0.5Mn1 5O4为正极材料,高安全性Li4Ti5O12为负极材料制备了LiNi0.5Mn1.5O4/Li4Ti5O12全电池,重点研究了正负极容量配比对电池电化学性能的影响.其中正极容量过量40%的电池具有最好的倍率和循环性能,在0.5 C电流下,P/N=1.4的电池的最高放电比容量为164.1 mAh·g-1,循环200次的容量保持率为88%;在2C电流下,P/N=1.4的电池的最高放电比容量为135.2 mAh·g-1,循环740次的容量保持率为91.1%.P/N=1.4的电池良好的倍率和循环性能与其内阻较小、电池极化较小等因素有关.  相似文献   

10.
采用溶胶-凝胶法合成Li4Ti5O12/Li1.3Al0.3Ti1.7(PO4)3复合负极材料,通过X射线衍射、扫描电子显微镜、恒电流充放电、循环伏安和电化学阻抗研究复合材料的结构、形貌及电化学性能。结果表明:溶胶-凝胶法能合成纯相Li4Ti5O12/Li1.3Al0.3Ti1.7(PO4)3复合负极材料,所合成材料颗粒均匀。与纯相Li4Ti5O12相比,引入Li1.3Al0.3Ti1.7(PO4)3的Li4Ti5O12复合负极材料具有更低的锂离子嵌入/脱出阻抗,Li1.3Al0.3Ti1.7(PO4)3质量分数为1%、2%、3%、4%、5%的Li4Ti5O12复合材料首次放电容量比纯相Li4Ti5O12分别提高了6.2%、11.8%、15.5%、8.0%和2.0%。Li1.3Al0.3Ti1.7(PO4)3质量分数为3%的Li4Ti5O12复合负极材料20次循环后每次循环容量衰减率为0.022%,循环性能最好。  相似文献   

11.
以Mg(CH3 COO)2·4H2O,CO(CH3 COO)2-4H2O作为Mg2+和CO2+的掺杂源,以乙醇为溶剂,C6H15 NO3作为络合剂,CH3,COOLi·2H2O和Ti(OC4 H9)4作为原料,利用溶胶-凝胶法制备复合掺杂2种金属的Li4-xMg-Ti5-yCoyO12材料,并对其进行了X射线衍射(XR...  相似文献   

12.
无定形TiO2合成尖晶石Li4Ti5O12的性能   总被引:5,自引:0,他引:5  
用无定形TiO2与Li2CO3高温固相反应合成了性能良好的"零应变"电极材料Li4Ti5O12. XRD, SEM和激光粒度分析表明,产物结晶度好,无杂质相,为纯立方尖晶石相,Li4Ti5O12颗粒呈砾石状形貌,有团聚现象,平均粒度约2.66 μm. Li4Ti5O12电极具有较宽的充放电平台,循环性能稳定. 以0.1 C电流比率恒电流充放电,首次放电容量和循环容量分别达180和150 mA·h/g. 交流阻抗谱研究发现,Li4Ti5O12不同嵌锂程度下的电导率对其电极的电化学阻抗具有较大影响,电极的Warburg阻抗曲线斜率与其荷电状态相关.  相似文献   

13.
本文以葡萄糖为碳源,采用原位复合法制备锂离子电池复合负极材料Li4Ti5O12@C,同时探讨了不同碳包覆量对Li4Ti5O12的影响。通过X-射线衍射和扫描电子显微镜对合成出的材料结构及表面形貌进行表征,采用恒电流充放电和电化学阻抗等技术对其进行电化学性能测试。结果表明:碳包覆量为3 %的Li4Ti5O12颗粒均匀且电化学性能最好。在0.5 C下,首次放电比容量为185.9 mAh/g,循环50次后,其放电比容量仍为161.5 mAh/g。在2.0 C下,首次放电比容量为99.9 mAh/g,材料表现出优良的电化学性能。  相似文献   

14.
采用柠檬酸(C6H8O7·H2O)作碳源制备Li4Ti5O12/C复合材料,利用X射线粉末衍射仪(XRD)和扫描电子显微镜(SEM)研究了柠檬酸添加量对材料结构和形貌的影响。研究结果表明:添加不同量的柠檬酸,所制备的样品均为尖晶石型结构。随着柠檬酸添加量的增加,材料颗粒粒径逐渐增大,分布更加均匀,团聚也逐渐加剧。在1.0~2.5V的电压范围内,对样品进行恒流充放电测试,柠檬酸(C6H8O7·H2O)的添加量为6%时,制备的Li4Ti5O12/C复合材料具有最佳的电化学性能,0.2C和1C的放电比容量分别为171.3m Ah/g和165.4m Ah/g。  相似文献   

15.
以三氟甲磺酸镁(MFS)作为高电压双功能电解液添加剂,用于提高Li/LiNi0.5Mn1.5O4(Li/LNMO)电池的性能。采用线性扫描伏安法(LSV)、循环伏安法(CV)、充放电和交流阻抗(EIS)进行电化学性能测试,通过SEM、XPS、FTIR对含不同电解液的Li/LNMO电池循环前后的电极表面进行了表征。结果表明,MFS在充放电过程中优先于电解液溶剂氧化分解,在两个电极上形成电解液界面膜,对电极提供保护,抑制了电解液的分解。在MFS添加量(以基础电解液质量为基准,下同)为0.3%的电解液中,Li/LNMO电池在1 C倍率下循环300次后,放电比容量从初始时的135.12 mA·h/g降至123.86 mA·h/g,容量保持率高达91.67%。与电解液中未添加MFS的电池相比,其循环后阻抗明显减小,表现出较好的循环性能。  相似文献   

16.
用NH4HCO3为起泡剂共沉淀法成功的合成出一种多孔类球形钛酸锂,并对它的结构及电化学性能进行了研究。经测试表明合成出的Li4Ti5O12振实密度达到1.68 g/cm3,采用XRD粉末衍射测试表明产物为纯相尖晶石型Li4Ti5O12,扫描电镜表明产物为平均尺寸为2~5μmd的多孔的类球体结构。在1.0~3.0 V下充放电0.1 C、1 C、1.5 C、2 C、3 C倍率下首次放电容量分别为176.4、151.6、143.8、138.5 mAh/g。  相似文献   

17.
溶胶-凝胶法制备Li4/3Ti5/3O4/Ag复合材料及其表征   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法制备Li4/3Ti5/3O4/Ag复合材料,通过X射线衍射、扫描电子显微镜、恒电流充放电及交流阻抗等技术检测和分析合成产物的物相、形貌及电化学性质。研究表明,在Li4/3Ti5/3O4中添加Ag后Li4/3Ti5/3O4的Ti—O键没受影响,Li4/3Ti5/3O4/Ag及Li4/3Ti5/3O4的晶格常数非常接近,Ag没有进入Li4/3Ti5/3O4晶格,只是均匀地分散在Li4/3Ti5/3O4颗粒中。与Li4/3Ti5/3O4相比,Li4/3Ti5/3O4/Ag复合材料具有更高的比容量,更高的库仑效率以及更低的极化。添加Ag后对Li4/3Ti5/3O4锂离子扩散系数影响不大。电化学循环过程中,Li4/3Ti5/3O4/Ag的容量损失小于Li4/3Ti5/3O4,且随着充放电倍率的增加两者容量损失差距变大。Ag的添加大大地改善了Li4/3Ti5/3O4的循环性能,尤其是大电流循环性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号