首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
18F-氟乙基胆碱(18F-FECH)是18F-FDG的重要补充,在脑瘤转移和前列腺癌及转移的诊断方面有重要的应用价值。利用国产单次PET-FDG-TI-I CPCU型FDG合成模块,未改变硬件,通过更改试剂与耗材,半自动合成18F-FECH,并在产品收集瓶前增加C18纯化柱,减少K2.2.2杂质的含量。合成时间约30min,放化产率42.0%(未时间校正,n=5),放置6h后放化纯度99.0%,体外稳定性良好;合成时间和产率与国内外模块结果相近。结果表明,在国产单次PET-FDG-TI-I CPCU型FDG模块上可半自动合成18F-FECH,合成效率及放化纯度较高。  相似文献   

2.
为验证特异性肿瘤PET乏氧显像剂1-H-1-(3-~(18)F-2-羟基丙基)-2-硝基咪唑(~(18)F-FMISO)注射液的临床前即时标记工艺的可行性、可靠性和稳定性,采用国产氟多功能自动化合成装置,以1-(2′-硝基-1′-咪唑基)-2-O-四氢吡喃基-3-O-甲苯磺酰基丙二醇(NITTP)为前体,经氟化、水解反应制备18 F-FMISO注射液,按照优化的制备工艺进行~(18)F-FMISO三批连续生产,并对其关键工艺参数和产品质量标准进行验证。结果表明:总合成时间小于40min,产品放化产率大于45%(未衰减校正,n=5),比活度大于3.7×1010 Bq/mmol,放置3个半衰期后放化纯度仍大于95%,体外稳定性良好。该自动合成工艺稳定可行,三批产品各项指标均符合质量标准规定,满足临床PET显像要求。  相似文献   

3.
《同位素》2018,(5)
~(18)F-6-L-多巴(~(18)F-FDOPA)作为多巴胺神经递质显像剂,已广泛应用于帕金森病、脑肿瘤以及神经内分泌疾病正电子发射断层(PET)显像诊断和疗效评估。本文使用进口多功能合成仪及其配套卡套和试剂盒,经氟化、还原、碘化、烷基化和水解多步反应,以及HPLC分离纯化,再经无菌过滤器传入产品瓶,得到~(18)F-FDOPA注射液,实现~(18)F-FDOPA自动化生产。并对获得的~(18)F-FDOPA注射液进行质量检测与分析:~(18)F-FDOPA注射液无色、澄清,pH为4~5.5,放化纯度98%,放射性核纯度99%,比活度1.9 GBq/μmol,K2.2.2含量50 mg/L,甲醇含量0.01%,乙醇含量0.01%,二氯甲烷含量0.01mg/L,二甲基甲酰胺含量15 mg/L,细菌菌内毒素0.100 EU/mL,无菌检查结果为0cfu/mL,异常毒性实验为阴性。正常Wistar大鼠腹腔注射卡比多巴30 min后,尾静脉注射~(18)FFDOPA,100min后行microPET/CT扫描,图像显示双侧纹状体可见对称性放射性摄取。进口多功能合成仪可高效、稳定地自动化合成~(18)F-FDOPA,合成时间约80min,校正放化产率为(63.1±3.8)%(n=10),放化纯度大于98%,产品质量达到动物和人体PET显像要求。  相似文献   

4.
FDG 18F-脱氧葡萄糖(18F-FDG)合成模块一般仅能采用一种工艺进行生产,改变工艺条件会对产品质量造成影响,本文旨在解决此问题,同时优化生产工艺。本研究对国产碱水解FDG合成模块进行改进,省去自动加碱装置及在柱水解部件。通过研究亲核反应时间、盐酸量、水解时间及残留溶剂等影响因素,寻求酸水解合成18F-FDG最优化的合成工艺。从淋洗18F-离子至终产品18F-FDG的总合成时间为27 min,合成效率为60.27%±2.29%(n=37,未校正效率),产品放化纯度大于98%,产量(29.15±3.09)GBq(n=37)。改进的合成工艺实现了自动化、稳定合成18F-FDG,产品满足临床需求,实现了两种不同工艺在同一模块上制备18F-FDG。  相似文献   

5.
18F-氟乙基胆碱(18F-FECH)是反映胆碱代谢的PET肿瘤显像剂,在肿瘤特别是脑肿瘤诊断中显示出良好的应用前景。为了方便临床应用,本工作利用PET-MF-2V-IT-I型18F多功能合成模块,自动化合成18F-FECH。首先18F-与1,2-乙二醇二对甲苯磺酸酯在90℃下发生亲核取代反应,产物未经纯化即与N,N-二甲基乙醇胺在100℃下发生烷基化反应,此后经过C18柱和CM柱进行分离纯化,得到目标产物。整个过程需时约40 min,最终产品放化收率30%(未经时间校正),放化纯度≥99%,室温下可稳定放置6 h。本方法简便易行,合成时间短,收率较高,产品稳定性好,且其它各项指标均符合规定,为临床常规应用提供了保证。  相似文献   

6.
采用国产碳-11多功能合成模块,研究全自动化合成11 C-乙酸盐的工艺流程。用0.1mL 1.5mol/L的溴化甲基镁在Loop环中与11 C-CO2反应生成中间体乙酰溴化镁,中间体由乙酸水解,再经纯化、洗脱、盐酸酸化,通入氮气除去未反应的11 C-CO2,以磷酸三钠中和后过无菌滤膜得11 C-乙酸盐注射液。总合成时间约为10min,校正放化产率为(58.5±6.7)%,放化纯度大于99%。使用气相色谱仪测得产品中有机溶剂丙酮和乙腈的残留浓度分别为(0.007±0.002)%和(0.005±0.002)%。整个合成过程实现全自动化,操作简单、灵活,合成产率和放化纯度较高,可以满足临床使用需求。  相似文献   

7.
将国产11 C碘代甲烷模块和氟多功能模块联合使用,合成11 C的正电子放射性药物。由11 C碘代甲烷模块合成甲基化试剂11 CH3-Triflate,将11 CH3-Triflate通入到含有前体的氟多功能模块第二反应管中,加热后经半制备HPLC纯化,收集产品后再经固相萃制备可供注射的11 C放射性药物。通过以上结合,经HPLC纯化,可自动化合成11 C-Ralopride(合成效率(38.2±4.5)%,n=10)、11 C-PIB(合成效率(68.4±3.2)%,n=12)、11 C-DASB(合成效率(52.4±5.5)%,n=4)、11 C-PK11195(合成效率(45.6±7.1)%,n=8)。制备药物的放化纯度大于95%。研究表明,将国产11 C碘代甲烷模块和氟多功能模块结合使用,可以合成多种11 C放射性药物以满足临床的需求。  相似文献   

8.
~(18)F-甲基胆碱(~(18)F-FCH)和~(18)F-乙基胆碱(~(18)F-FECH),是两种重要的~(18)F标记的胆碱类似物,它们既被磷酸激酶磷酸化,又参与膜磷脂的合成,广泛应用于正电子发射计算机断层显像(PET-CT)检查,在肿瘤诊断中具有十分重要的作用。但普遍存在合成产率不高、不稳定或者使用对皮肤具有腐蚀性的三氟甲磺酸银(triflate-Ag),为合成操作和临床应用带来不便。本工作以2-溴三氟甲磺酸乙酯(BrC_2H_4OTf)与~(18)F-反应生成BrC_2H_4~(18)F,再与N,N-二甲基乙醇胺反应,纯化后得到产品。改变了传统工艺中以价格比较昂贵的TsOCH_2CH_2TsO为原料的方法,避免腐蚀性较强的三氟甲磺酸银(triflate-Ag)柱的CH_2Br_2的方法。反应过程温和,各个反应步骤容易控制,对合成模块设备的要求较低,合成时间短,利于~(18)F-乙基胆碱(~(18)F-FECH)的临床应用。  相似文献   

9.
以硝基藜芦醛为原料 ,采用亲核取代合成法 ,利用手性相转移催化烷基化等多步反应制备了6 [18F]氟 L 多巴 (18FDOPA) ,并用手性流动相和反相C18柱的HPLC法测定对映纯度。结果表明 ,18FDOPA总的合成时间少于 12 0min ,经衰减校正后总放化产额约为 6 3% ,对映纯度和放化纯度分别大于 95 %和 99%  相似文献   

10.
6-[~(18)F]氟-L-多巴的合成   总被引:3,自引:0,他引:3  
以硝基藜芦醛为原料,采用亲核取代合成法,利用手性相转移催化烷基化等多步反应制备了6-[^18F]氟-L-多巴(^18FDOPA),并用手性流动相和反相C18柱的HPLC法测定对映纯度。结果表明,^18FDOPA总的合成时间少于120min,经衰减校正后总放化产额约为6.3%,对映纯度和放化纯度分别大于95%和99%。  相似文献   

11.
采用住友CFN-multi-P100多功能模块快速、自动化合成(N-[~(18)F]氟甲基)-胆碱(~(18)F-FCH),并评价其在正常小鼠体内生物分布,以及胰腺癌裸鼠模型的PET/CT显像情况。前体CH2Br2与~(18)F-气相反应生成18FCH2Br,18FCH2Br经4个Si柱纯化后与三氟甲基磺酰银(Ag-Triflate)反应生成活性更高的氟代三氟甲基磺酰基甲烷(~(18)FCH2OTf),新中间体与预先加在C-18柱子上的N,N-二甲基乙醇胺(DMAE)反应再经SEP-PAK CM柱纯化得到18F-FCH。将~(18)F-FCH静脉给予正常小鼠,分别在给药后5、10、30、60、90、120min处死,测定主要脏器的质量及放射性计数。将~(18)F-FCH静脉给予胰腺癌裸鼠,注射10min后观察荷瘤裸鼠的PET/CT显像情况。结果显示,~(18)F-FCH合成时间32min,未校正的合成效率为(25±5)%(n=23),放化纯度大于97%。小鼠体内生物分布实验显示,18F-FCH在血液中清除快,绝大多数脏器在5min时放射性分布达最高值,后逐渐降低或处于相对稳定状态。放射性主要分布在肾脏、肝脏,而脑、肺、肌肉对~(18)F-FCH的摄取均较少。荷瘤(胰腺癌)裸鼠的PET/CT显像表明,~(18)FFCH在裸鼠肾脏、肝脏和脾脏聚集,胰腺癌细胞对~(18)F-FCH未见明显摄取。结果提示,住友CFN多功能模块可自动化、快速合成18F-FCH。18F-FCH在正常小鼠体内分布与文献报道的11 C-胆碱相似,具有一定的应用前景,但其对胰腺癌的诊断仍需进一步研究。  相似文献   

12.
快速自动化合成~(18)F-FMISO及其质量控制   总被引:1,自引:0,他引:1  
采用改良的FDG-CPCU,以1-(2’-硝基-1’-咪唑基)-2-O-四氢吡喃基-3-O-甲苯磺酰基丙二醇为原料,经氟化、水解两步法全自动快速合成18F-FMISO。结果表明,合成时间25 min,不校正和校正合成效率分别为(50.3±1.6)%(、61.8±2.3)%,放射性浓度200~220 GBq/L,平均活度2.1×103MBq;TLC法及HPLC法测其放化纯度均大于98%;18F-FMISO的急性毒性及无菌实验未见异常毒性及细菌生长;室温放置6 h及血清温育48 h,18F-FMISO的放化纯度未见明显变化;小鼠尾静脉无菌实验注射18F-FMISO后不同时间处死,测定药物生物分布及药代动力学参数,并由此估算人体内辐射吸收剂量,得到人体肾辐射吸收剂量最高,为24.6μGy(以注入1 MBq18F-FMISO计,下同),全身辐射吸收剂量最低,为8.49μGy,有效剂量为20.5 pSv/Bq。这些资料为临床安全应用18F-FMISO提供了依据。同时,18F-FMISO肺癌模型小鼠生物学分布表明,18F-FMISO适用于心、肺肿瘤的乏氧评价。  相似文献   

13.
在核医学分子影像领域用于正电子示踪剂的~(18)F-氟标记方法中,基于含~(18)F-氟中间体分子(即辅基)的方法其反应条件温和、化学选择性好,产物易纯化,是进行~(18)F-氟标记的经典策略之一。2-~(18)F-氟代-2-脱氧-D-葡萄糖(2-~(18)F-fluoro-2-deoxy-D-glucose,~(18)F-FDG)是目前临床最常用的正电子示踪剂,其分子结构简单、亲水性强、易获得,是用于间接~(18)F-氟标记的理想辅基。通过比较其方法学参数,并分析标记产物性能可知,以~(18)FFDG为辅基的间接~(18)F-氟标记方法有酶法、成肟法、巯基连接法、"点击化学"法等,在小分子、肽、酶和纳米粒的~(18)F-氟标记研究中均有报道。此外,微流控芯片等新技术在上述方法中也有应用。与~(18)F-FDG连接可方便地同时实现被标记分子糖基化和~(18)F-氟标记,显著改善标记产物的体内分布和消除特性,虽存在反应步骤多、被标记分子需修饰等局限,但以~(18)F-FDG为辅基进行~(18)F-氟标记仍是一种具有较高可行性和应用价值的间接~(18)F-氟标记策略。  相似文献   

14.
用"一锅法"和TRACERlab FXF-N自动化合成仪系统合成了18F-氟代乙酸盐(18F-FAC)和1-H-1-(3-18F-2-羟基丙基)-2-硝基咪唑(18F-FMISO).以溴代乙酸苄酯为前体,在同一反应瓶中经亲核氟化、NaOH水解两步反应及Sep Pak小柱分离纯化制备了18F-FAC注射液,总合成时间小于40 min,未经校正的放化产率和放化纯度分别大于45%和99%.以1-(2'-硝基-1'-咪唑基)-2-O-四氢吡喃基-3-O-甲苯磺酰基丙二醇为原料,用类似方法制备了18F-FMISO注射液,总合成时间小于40min,未经校正的放化产率和放化纯度分别大于40%和95%.采用"一锅法"自动化合成18F-FAC和18F-FMISO注射液,操作简便,该工艺可用制备2-18F-2-脱氧-D-葡萄糖(18F-FDG)的全自动化合成模块来制备18F-FAC和18F-FMISO注射液.  相似文献   

15.
使用PET-MF-2V-IT-I型氟-18多功能合成模块,以3-N-t-叔丁氧羰基-1-[5’-O-(4,4’-二甲氧基三苯甲基)-2’-脱氧-3’-O-(4-硝基苯磺酰基-β-1)-苏戊呋喃糖]胸腺嘧啶为前体,经氟化、水解后小柱分离制得18F-FLT注射液。对荷肝细胞癌小鼠进行18F-FLTPET/CT显像,结果显示,柱分离法合成18F-FLT耗时~35min,放化产率为12%-15%,放化纯度95%。表明18F-FLT静脉注射1h后肿瘤对18F-FLT的摄取明显高于周围正常组织。该法合成简单、反应时间短、产率高,可满足临床应用。  相似文献   

16.
采用"一锅法"和TRACERlab FXF-N自动化合成装置,以3-N-t-叔丁氧羰基-1-[5'-O-(4,4'-二甲氧基三苯甲基)-2'-脱氧-3'-O-(4-硝基苯磺酰基)-β-D-苏型阿呋喃糖基]胸腺嘧啶为前体,在同一反应瓶中经亲核氟化、盐酸水解两步反应及HPLC分离纯化制备18F-FLT注射液.以乙二醇二对甲苯磺酸酯为起始原料,在同一反应瓶中经亲核氟化和烷基化两步反应及HPLC分离纯化得18F-FET注射液.18F-FLT和18F-FET总合成时间分别约为60 min和50 min,未校正的放化产率均大于20%,放化纯度均大于95%.18F-FLT和18F-FET注射液质量控制指标符合放射性药物质量要求.  相似文献   

17.
肿瘤显像剂18F-氟代乙酸盐的自动化合成   总被引:13,自引:0,他引:13  
为研究肿瘤显像剂18F-氟代乙酸盐(18F-FAC)的自动化合成工艺,采用"一锅法"和TRACERlab FXF-N自动化合成装置,以溴代乙酸苄酯为前体,在同一反应瓶中经亲核氟化、NaOH水解两步反应及HPLC系统分离纯化制备18F-FAC注射液.总合成时间约50 min,未校正放化产率和放化纯度分别大于45%和99%.采用"一锅法"自动化合成18F-FAC,操作简便,能满足科研和临床正电子发射断层显像的需要.  相似文献   

18.
肿瘤分子显像剂18F-氟乙基胆碱的自动化合成   总被引:1,自引:0,他引:1  
18F-氟标记的胆碱衍生物18F-氟乙基胆碱(18F-FeCH)对前列腺癌等多种肿瘤的显像诊断均比较敏感,具有良好的临床应用前景。本文基于“两步一锅法”,经过对商品化Explora FDG4合成模块进行合理的改装发展了埽F-FeCH的自动化合成方法。第一步是18F离子与1,2-二对甲苯磺酰基乙烷的亲核取代反应,90℃反应5min,生成标记中间体18F-氟乙基对甲苯磺酰酯。第二步是18F-氟乙基对甲苯磺酰酯与N,N-二甲基-2-羟乙基铵之间的烷基化反应,100℃反应8min,经过Sep-pak硅胶柱分离,获得目标产物18F-FeCH。总合成时间约65min,放射化学产率为30%(未衰变校正),放射化学纯度大于99%。  相似文献   

19.
为研究18F-FDG对HepG2肝癌细胞增殖的影响,探讨其作用机制,以0—92.5×106 Bq/mL的18F-FDG作用HepG2肝癌细胞后6、12和24 h,用倒置显微镜观察、流式细胞术和逆转录-聚合酶链式反应(RT-PCR)技术检测细胞增殖、凋亡、活性氧含量及P53基因表达。结果表明,18F-FDG能诱导HepG2肝癌细胞的凋亡,并随18F-FDG放射性浓度的增大,细胞凋亡率增大,活性氧含量增加,P53表达增强。由此可见,18F-FDG能通过诱发HepG2肝癌细胞凋亡来抑制其增殖,且抑制率呈放射性浓度依赖性升高。  相似文献   

20.
孙传金  朱虹  方可元 《同位素》2012,25(3):155-159
采用国产氟多功能模块,以3-甲氧基甲基-16,17-O-磺酰基-表雌三醇-O-环状砜(3-O-(Methoxymethyl) -16,17-O-sulfuryl-16-epiestriol,MMSE)为前体,在国产氟多功能合成模块的密封体系下,经18F标记合成雌激素受体显像剂16α-[18F]氟-17β-雌二醇(18F-FES)。结果显示:合成的18F-FES,不校正合成效率为8.2%,校正合成效率为12.8%;合成时间约为70 min,标记物18F-FES放化纯度大于98%,体外稳定性良好。以上结果表明,国产氟多功能模块可制备18F-FES溶液,制备的18F-FES溶液符合放射性药物的质量要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号