共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
磷光材料凭借其优异的余辉特性、制备简便、低毒性等优点,在光学传感、生物成像、防伪等领域展现出良好的应用前景。制革加工中及皮革制品废弃后会产生大量浸酸山羊皮边角料,浸酸山羊皮已被证明可以用于制备荧光型碳点(CDs)并用于防伪;开发磷光型碳点有望丰富酸皮基碳点的种类并提升防伪效果。本研究以浸酸山羊皮为碳源,硼酸为硼源,采用热解法制备磷光型碳点(P-CDs)。探讨了浸酸山羊皮含量、反应pH、反应温度和反应时间等对P-CDs余辉时长的影响。结果表明当硼酸与浸酸山羊皮的质量比为3:0.12,反应pH为7,反应温度为225 ℃,反应时间为7.5 h时,碳点的余辉时间最长,达到12 s;该材料的发射波长为520 nm,对应明亮的绿色余辉。通过表征发现P-CDs平均粒径为4.42 nm左右,具有典型的石墨结构,硼原子成功的掺入碳点中形成了C-B、B-O等共轭链结构,稳定了三重激发态,延长了余辉时间。该材料在防伪及信息加密领域呈现潜在的应用价值。 相似文献
6.
以柠檬酸钠为碳源、氨水为氮源,采用一步水热法制备了氮掺杂碳点(NCDs),对其制备条件进行了优化.采用荧光光谱仪、TEM、AFM、XPS及FTIR对制备的NCDs进行了表征,并探索了NCDs在Fe3+检测及荧光防伪中的应用.结果表明,NCDs的最优制备条件为柠檬酸钠浓度为0.1 mol/L、氨水浓度为1.8 mol/L、反应温度为200℃、反应时间6 h、装载体积25 mL.在最优条件下制备的NCDs的荧光为典型的非激发波长依赖型,最佳激发波长为343 nm,最佳发射波长为443 nm,荧光量子产率可达54.9%.NCDs为球形结构,平均粒径为4.96 nm,碳核为类石墨烯结构且其表面含有—NH2、—OH及—COOH.NCDs的荧光可被Fe3+选择性猝灭,且荧光猝灭程度与Fe3+浓度在0.1~87.5μmol/L范围内线性关系良好,检测限为50 nmol/L.此外,将NCDs配制成荧光墨水,利用喷墨打印机打印出的图案整体饱满、边缘细节清晰具有很强的可识别性. 相似文献
7.
8.
以脱脂棉为碳源,采用水热合成法来制备了荧光碳量子点。采用透射电镜、X射线衍射、漫反射光谱、红外光谱对样品的表面形貌、粒径大小、表面基团情况进行表征。结果表明:样品是规则的球形单晶结构,粒径为2.7 nm。 相似文献
9.
10.
11.
Liangliang Lin Yuan Xia Hongyu Wen Wentong Lu Ziyang Li Hujun Xu Juan Zhou 《American Institute of Chemical Engineers》2023,69(1):e17901
In this work, a simple, continuous and completely green method based on microflow technique is demonstrated for the synthesis of carbon quantum dots (CQDs) from diverse bio-based precursors. CQDs prepared from milk is illustrated as a case study to show the process feasibility. Crystalline fluorescent CQDs of 12.53% quantum yield and good stability are synthesized by the approach, even at 120°C. Systematic experiments further suggest their optical properties, bandgap energy, and fluorescence lifetime are closely related to the synthesis temperature. The maximum production rate of the CQDs was 51.1 mg/h at 180°C. Cytotoxicity and cellular imaging tests against 3T3 cells reveal the CQDs possess high biocompatibility, and can penetrate cell membranes and display bright fluorescence. The process versatility is investigated by expanding the precursor to watermelon juice, orange juice, and soy milk, indicating successful synthesis of small-sized CQDs of low cytotoxicity and strong photoluminescence by the technique. 相似文献
12.
Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke
《Carbon》2014
Here we report a new strategy for preparation of water-soluble photoluminescent carbon quantum dots (CQDs) from petroleum coke. Petroleum coke was oxidized first in mixed concentrated H2SO4 and HNO3, and then functionalized by hydrothermal ammonia treatment. The as-made CQDs and nitrogen-doped CQDs (N-CQDs) were characterized by UV–Vis absorption spectroscope, fluorescence spectroscope, transmission electron microscope, atomic force microscope, Raman spectrometer, X-ray powder diffractometer, X-ray photoelectron spectroscope and Fourier transform infrared spectrometer. The results show that the quantum yield of CQDs increases greatly from 8.7 to 15.8%, and the fluorescent lifetime increases from 3.86 to 6.11 ns after the hydrothermal treatment in ammonia. Moreover, the fluorescent color of N-CQDs can be tuned through the amount of doped nitrogen. Both CQDs and N-CQDs are water-soluble, and have uniform particle distribution, strong luminescence, and highly fluorescent sensitivity to pH in a range of 2.0–12.0. The uniform size distribution and nitrogen-doping of N-CQDs help to lead to high yield of radiative recombination, resulting in improved fluorescence properties. This work offers a simple pathway to produce high quality and enhanced photoluminescent CQDs from petroleum coke. 相似文献
13.
《Ceramics International》2022,48(24):35986-35999
CQDs (carbon quantum dots) have attracted a lot of attention in the field of photocatalysis due to its absorption of visible light, up-conversion luminescence, rich free groups on the surface and low cost. CQDs doped semiconductor can improve the photocatalytic reaction rate by the following three points: (1) adjust the band structure of photocatalyst; (2) facilitate the absorption of more visible light; (3) facilitate electron transfer and inhibits electron-hole recombination. In this review, the mechanism (photosensitizer, electron acceptor, up-conversion luminescence, etc.) and applications (photocatalytic degradation of organic pollutants, reduction of heavy metals, etc.) of CQDs in the field of photocatalysis are briefly introduced. Finally, the factors affecting the photocatalytic activity were summarized in order to adjust the reaction conditions and show high catalytic activity. It is hoped that this review can provide insights and inspiration for the development of CQDs in the field of photocatalysis. 相似文献
14.
新型喷墨打印墨水用水溶性染料 总被引:1,自引:1,他引:1
介绍了近年来研究开发用于喷墨打印墨水的新型水溶性染料的结构及合成方法,这些新型染料以偶氮类为主、属于酸性、直接或活性染料,用于墨水时具有较好的应用和牢度性能,其颜色包括黑色、品红色、黄色和青色。有43篇参考文献。 相似文献
15.
《Ceramics International》2017,43(6):5329-5333
We report a promising simple strategy for improving the performance of the photoanode for photoelectrochemical (PEC) water oxidation. Three-dimentional hierarchical ZnO nanoflake arrays with abundant porosity and small thickness on fluorine-doped tin oxide glass substrate (FTO) was prepared with electrodeposition. The ZnO nanoflake-based photoanode exhibits superior photoresponse and PEC capability. Furthermore, the ZnO photoanode sensitized by carbon quantum dots (CQDs) can further PEC performance due to the narrower bandgap of CQDs and the improved efficiency of photogenerated electrons transfer from CQDs to ZnO nanostructures. The morphology and properties of the sample were examined by scanning electron microscopy (SEM), cross-section SEM, UV–vis spectra, X-ray photoelectron spectra (XPS), FT-IR, X-ray diffractometry (XRD) and electrical measurements. 相似文献
16.
《Ceramics International》2019,45(14):17006-17013
Industrialization today leads to a significant increase in the environmental pollution, with number of phenols, pesticides, paints, solvents and other organic pollutants with potentially carcinogenic effect in natural resources. Investigation of some new semiconductor materials and their photocatalytic properties for removal of pollutants is a challenging work. However, limited usage of photoactive materials still requires the testing of new materials with photoactive properties. The current work introduces the swift and easy approach for synthesis of (metal–free) N–doped carbon quantum dots in water using microwave reactor. Synthesis was performed from glucose water solution by heating in microwave reactor for only 1 min, at low temperature and applied microwave power. The synthesized N–doped carbon quantum dots show remarkable photocatalytic activity for removal of toxic organic dye (Rose Bengal) under visible light irradiation. Almost 93% of the dye degradation is achieved after only 30 min of radiation. The uninspected result, that the pH of the medium has a significant effect on the performance of the synthesized material in the presence of organic dye, indicates that dots show dual behavior. In the neutral and basic conditions, they have the ability to degrade organic dye, whereas, by shifting the medium pH into acidic medium, they form a stable conjugate with Rose Bengal. 相似文献
17.
在自制分散红染料色浆中加入各种添加剂,制得分散红喷墨墨水.通过考察墨水染料粒径、粒径分布、Zeta电位及墨水粘度等特性,探讨了分散剂用量、分散染料用量和各种添加剂种类及用量对喷墨墨水胶体性能的影响.结果表明,优选分散染料为20%(色浆)、分散剂对染料比为1:1.25、PEG-200质量百分比为2%、PVPK-30质量百分比为1%、丙三醇∶1,2-丙二醇∶异丙醇=2∶1∶1,加去离子水至100%.墨水的粒径能够达到150nm左右、粒径分布约为0.2、Zeta电位约为-40 mV、粘度大约在3.0 mPa·s左右,其性能均符合压电喷墨打印要求.研究表明分散剂对喷墨墨水稳定性有显著影响,其用量可调节墨水粒径、稳定性及粘度;水溶性高分子聚合物作为墨水的成膜剂和粘度调节剂,可以改善墨水的喷射性能.甘油、1,2-丙二醇和异丙醇在作为保湿剂的同时还可调节墨水粘度. 相似文献