首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 453 毫秒
1.
本文采用一种新型的气体多通道送粉等离子喷涂技术制备得到了含有不同质量分数的ZrO2/Fe基非晶复合涂层。采用该技术可成功制得ZrO2颗粒均匀分布于非晶基体的复合涂层,且可实现第二相颗粒的比例调控。磨损实验表明,复合涂层的磨损性能较单一的Fe基涂层有了很大提高。同时,ZrO2颗粒的添加可提高耐蚀性能降低孔隙率。经实验表明,复合涂层的最佳耐蚀性能为ZrO2含量50%。  相似文献   

2.
利用火焰喷涂技术喷涂自制的气雾化合金粉末取代非晶粉末,制备了NiFeBSiNb非晶纳米晶涂层。分别对粉末和涂层的微观组织结构和热力学性能进行了表征。结果表明,自制的合金粉末球形度较好,大多为球形或椭球形;主要为晶体结构,由Nb2Ni21B6晶体相和(Ni,Fe)23B6固溶体组成。而经过火焰喷涂制备的涂层,形成了非晶相和纳米晶相。通过公式计算此合金体系粉末和涂层形成非晶相的临界冷却速率分别为6.01×105K/s和4.56×103K/s,解释了在粉末制备过程中较难形成非晶相而喷涂过程中形成非晶结构比较容易。对涂层的摩擦磨损性能进行了测试,涂层摩擦系数仅为0.17,具有优异的耐磨性能。  相似文献   

3.
高强度钛合金TC18表面采用超音速火焰喷涂制备WC10Co4Cr涂层是解决其耐磨损需求的重要手段之一。本文以氧气流量、煤油流量、喷涂距离和送粉量作为四个主要工艺参数构建了四因素3水平(L9_3_4)正交试验,通过对比涂层工艺参数对涂层孔隙率、W2C含量的影响,获得了优化的涂层制备工艺参数:氧气流量为873NLPM,煤油流量为22LPH,喷涂距离为380mm,送粉量为60g/min的工艺参数,涂层孔隙率不大于1%,显微硬度高达HV0.31204.8,结合强度高达74.5MPa,涂层弯曲后无剥落,满足AMS 2447标准要求。试验条件下,WC10Co4Cr涂层的磨损量为3.371×10-7mm3/N.m,TC18的磨损量为2.095×10-3mm3/N.m,WC10Co4Cr涂层大幅度提高了TC18钛合金的耐磨性能。  相似文献   

4.
贾利  陈杰  崔烺  赵健 《金属热处理》2020,45(5):250-252
为提高镁合金的耐磨性能,采用冷喷涂技术在AZ91D镁合金表面制备铝基非晶涂层,并利用扫描电镜对涂层的微观形貌进行分析,采用X射线衍射仪分析喷涂粉末及涂层中的非晶含量,利用多功能摩擦磨损试验机研究了涂层的耐磨性能。结果表明:冷喷涂后涂层中仍含有铝基非晶结构,非晶含量为48%,涂层微观组织致密,孔隙率为0.59%。铝基非晶涂层的磨损量和磨损率均低于镁合金基体,摩擦因数高于基体。  相似文献   

5.
董亭义  杨滨  何建平  张勇 《金属学报》2009,45(2):232-236
研究了喷射成形大尺寸La62Al15.7(Cu, Ni)22.3非晶合金在过冷液相区内的塑性变形行为. 结果表明, 随加热温度 的增加和应变速率的减小, 该非晶合金由非稳态变形向单一稳态变形行为转变. 当应变速率为5×10-3 s-1, 温度为443 K和挤压比为6.25时, 喷射成形La62Al15.7(Cu, Ni)22.3非晶合金样品的密度由挤压前的5.723增加到挤压后的5.924 g/cm3, 达到了同成分吸铸态非晶合金密度 (6.134 g/cm3) 的96.6%. 挤压后非晶合金样品依然保持完全非晶态.  相似文献   

6.
为获得具备优异耐蚀能力的铝基非晶合金表面防护涂层,通过微合金化调控方法设计了铝基非晶合金的成分体系(Al_(86)Ni_6Y_(4.5)Co_2La_(1.5))_(100-x)(M)_x,(M:Cr、Mo、Ti),并采用超音速火焰喷涂(HVAF)工艺制备出相同成分的非晶合金涂层分析其耐蚀性能。结果表明:微量添加原子数分数0.5%的Mo、Cr元素时,铝基非晶合金的玻璃形成能力未见大幅度降低,仍具备完全非晶结构,但点蚀电位提高到-175~200 mV,较本征合金Al_(86)Ni_6Y_(4.5)Co_2La_(1.5)增大了约50~80 mV,而腐蚀电流密度降低约1.5个数量级,同时Mo、Cr元素的添加扩大了合金的钝化区间,可起到缓蚀作用;采用优化成分制备出的铝基非晶合金涂层,孔隙率仅为0.5%,在质量分数3.5%NaCl溶液中表现出优异的耐蚀性能,且具有明显的自钝化行为及较宽的钝化区间。  相似文献   

7.
纯铜SHS反应热喷涂Al2O3基复合陶瓷涂层的性能研究   总被引:1,自引:0,他引:1  
    采用SHS(自蔓延高温合成)反应火焰喷涂工艺,将Al-CuO铝热反应体系引入到喷涂陶瓷材料中,在纯铜表面制备Al2O3基复合陶瓷涂层.结果表明,SHS反应热喷涂层与基体的结合好于常规热喷涂,辅以Ni-Al合金打底,复合涂层500度下热震循环40次时仍完好无损.复合涂层的XRD图谱表明,在层间及涂层内部生成的NiCu及AlxCuy化合物有助于增强涂层的性能,同时Al的适当过量可以起到弥补喷涂过程中Al的损失并为体系提供良好的液相环境的作用,提高反应转化率,降低孔隙率,同时复合涂层具有较好的耐磨性及抗氧化性.  相似文献   

8.
采用超音速大气等离子喷涂制备全包覆TiB2-SiC涂层,研究了TiB2-SiC涂层在400和800 ℃的氧化性能,并探究其氧化机理。对TiB2-SiC涂层在900 ℃下的抗铝熔盐腐蚀性能进行研究,并探讨其耐熔盐腐蚀机理。结果表明,超音速大气等离子喷涂制备的TiB2-SiC涂层具有良好的抗氧化性,在400 ℃的氧化速率常数为1.92×10-5 mg2·cm-4·s-1,在800 ℃的氧化速率常数为1.82×10-4 mg2·cm-4·s-1。超音速大气等离子喷涂制备的TiB2-SiC涂层在900 ℃下具有良好的抗熔盐腐蚀性能,熔盐腐蚀后TiB2-SiC涂层都保持致密结构,未发生涂层的开裂及剥落。  相似文献   

9.
非晶合金拥有独特的短程有序、长程无序原子排列结构,具有高强度、高硬度及优异的耐腐蚀和耐磨损等性能,在防护涂层领域具有很强的应用潜力。以低温固态沉积为特点的冷喷涂层制备技术,可有效避免喷涂过程中非晶合金材料的氧化和晶化问题,但是冷喷涂技术严重依赖于粉末的塑性变形能力。为提高非晶合金颗粒在高速撞击下的沉积变形性能,本论文创新采用液氮-常温循环深冷处理工艺方法对Fe87.4Cr2.5Si6.8B2.4C0.9非晶合金粉末进行预处理,通过调控冷喷涂工艺参数,成功在6061铝合金基体表面制备非晶涂层。同时研究了深冷处理工艺对非晶粉末沉积行为以及涂层微观组织的影响机理,通过摩擦磨损试验研究非晶合金涂层的摩擦磨损性能。结果表明:使用原始非晶粉末制备得到的涂层厚度仅为6μm,且非晶颗粒在基体表面不连续分布,只有粒径较小的非晶颗粒可发生有效的塑性变形,但是粉末沉积过程中晶化率较低;使用经过深冷预处理的非晶粉末制备的涂层平均厚度为67μm,且涂层内非晶合金颗粒分布均匀,粒径较大的非晶颗粒也可发生有效塑性变形,但是粉末沉积过程中晶化率较高。在摩擦磨损过程中6061铝合金基体的主要磨损机制为粘着磨损与疲劳磨损,非晶涂层的主要磨损机制为磨粒磨损,且使用原始非晶粉末和循环深冷处理粉末制备得到的非晶涂层的质量磨损量较低,分别为6061铝合金基体质量磨损量的15.7%、11.8%。  相似文献   

10.
高温耐磨涂层是航空发动机关键摩擦副可靠使用的重要保障,鉴于其服役环境日益严苛复杂,进一步提高涂层的高温耐磨性能是十分必要的。利用激光辅助热喷涂技术制备 NiCoCrAlYTa / ZrO2 / BaF2·CaF2 高温耐磨涂层,利用 SEM、EDS 分析高温耐磨涂层的横截面微观组织及化学成分,研究 ZrO2 / BaF2·CaF2质量分数、激光功率及扫描速度对耐磨涂层微观组织、力学性能及高温耐磨性能的影响。结果表明:激光辅助处理可以诱导耐磨涂层表面形成具有树枝状结构的 ZrO2陶瓷层; 当激光功率为 80 W,扫描速度为 8 mm / s,喷涂粉末为 75 wt.% NiCoCrAlYTa+25 wt.% ZrO2 / BaF2·CaF2时,制备涂层的微观组织、综合力学性能及高温耐磨性能达到最好;在此工艺参数下,涂层顶部的 ZrO2 陶瓷层最为致密均匀,其平均纳米硬度为 13.6 GPa,平均弹性模量为 182.5 GPa,800 ℃时的磨损率为 2.7×10?5 mm3 ·N?1 ·m?1 。将高温耐磨涂层的组分设计与激光辅助热喷涂工艺相结合,可为提高涂层综合性能的提供解决途径。  相似文献   

11.
煤油流量对HVOF铁基非晶涂层组织与性能的影响   总被引:1,自引:0,他引:1  
以工业原材料制备的FeCoCrMoCBY非晶粉末为喷涂材料,采用超音速火焰喷涂(HVOF)制备铁基非晶合金涂层。通过X射线衍射仪(XRD)、差示扫描热仪(DSC)、扫描电子显微镜(SEM)、维氏显微硬度计等测试方法,探讨煤油流量对涂层显微组织、微观结构及显微硬度的影响,并分析涂层与316 L不锈钢在1 mol/L HCl溶液中的动态极化特征。结果表明:涂层与基体结合良好,呈现典型的层状结构,非晶含量高,表现出比316 L不锈钢更高的耐腐蚀性能。其它参数一定时,煤油流量越高,涂层致密度越高,非晶含量先增多后减少,显微硬度先增大后减小;当氧气流量为50 m~3/L,煤油流量为26 L/h时,涂层非晶含量最高,为99.4%,孔隙率为1.51%,自腐蚀电流密度低,为5.62×10~(-6) A/cm~2,自腐蚀电位为-0.36 V,耐腐蚀性能表现最佳。  相似文献   

12.
FeCrBSiNbW coatings were synthesized using robotically manipulating twin wires arc spraying system. The microstructure and mechanical properties of the coating were characterized. The coating has a laminated structure, and its porosity is 2.8%. The microstructure of the coating consists of amorphous and α-(Fe,Cr) nanocrystalline. The nanocrystalline grains with a scale of 20-75 nm are homogenously dispersed in amorphous matrix. The results show that FeCrBSiNbW coating has excellent wear and corrosion resistance. The wear resistance of the coating is about 4.6 times higher than that of 3Cr13 coating under the same testing condition. In 3.5% NaCl aqueous solution, the amorphous/nanocrystalline coating presents lower I corr values in polarization curves and higher fitted R t values in EIS plots than that of the 0Cr18Ni9 coating (chemical composition by EDAX analysis: C1.07-O12.38-Si0.49-Cr15.18-Mn0.89-Ni7.09-Fe62.24 at.%).  相似文献   

13.
The purpose of this paper is to examine whether cold spraying is capable of manufacturing high-quality ferrous-based amorphous alloy coatings by comparing the performance of a cold-sprayed with a plasma-sprayed Fe25Cr20Mo1Si amorphous coating on a 40Cr substrate. The hardness, microstructure, wear resistance, and corrosion resistance of the two coatings were determined with potentiodynamic polarization curves, neutral salt spray tests, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction and their performance differences were examined. The results show that the cold-sprayed Fe25Cr20Mo1Si coating has an amorphous content of 97.63%, which is slightly higher than that for the raw powder (97.24%) and plasma-sprayed coating (96.55%). The coating hardness ranges from 720 HV to 1,030 HV, which is higher than plasma-sprayed coating (590–610 HV) and decreases the wear rate to about 2/3. The average porosity is 2.97 ± 0.59%, which is lower than that of the plasma-sprayed coating (4.95 ± 0.13%). The cold-sprayed Fe25Cr20Mo1Si coating can pass the 3,000 hr neutral salt spraying test, while the plasma-sprayed coating fails within 120 hr. The corrosion current in 3.5% NaCl solution reached to its stable value about 1.66 A/cm2, which is about 1/4 of the plasma-sprayed coating (5.81 A/cm2). Upon analyzing the properties and the anticorrosion performance, it was found that there are no through-thickness pores in the cold-sprayed coating that impact its long-term anticorrosion performance. Cold spraying can be used to fabricate ferrous-based amorphous coatings instead of traditional thermal spraying technologies to obtain high-quality ferrous-based amorphous coatings.  相似文献   

14.
采用超音速火焰喷涂技术制备了WC-CoCr/铁基非晶复合涂层。比较研究了复合涂层和WC-CoCr的微观形貌、硬度、耐磨性能、高温氧化性能和腐蚀性能。XRD分析和SEM观察表明,复合涂层主要由WC相、W2C相和铁基非晶相组成。与WC-CoCr涂层相比,复合涂层的硬度有所降低,但是两者没有显著性差异。由于硬度下降,导致复合涂层的耐磨性能略低于WC-CoCr涂层。800℃高温氧化测试表明,复合涂层在800℃具有良好的热稳定性,这归因于氧化过程中生成了一层致密的氧化膜。此外,复合涂层在3.5%氯化钠溶液中的耐腐蚀性能也优于WC-CoCr涂层。  相似文献   

15.
FeB, FeBSi, and FeNiCrBSiNbW coatings were prepared by twin wires arc spraying process on AISI 1045 steel substrate, and the microstructure and phases were characterized by scanning electron microscope, transmission electron microscope, and x-ray diffraction. The corrosion resistance was investigated by means of electrochemical tests. It was found that FeB coating and FeBSi coating were composed of α-Fe, FeO, and Fe2O3 phases. FeNiCrBSiNbW coating consisted of amorphous phase and α-(Fe, Cr) nanocrystalline phase, with porosity of 1.8%, hardness of 807 Hv0.1 and tensile bonding strength of 52.1 MPa. Three kinds of electrochemical tests were employed to identify the corrosion resistance of the coatings. The results indicated that the FeNiCrBSiNbW coating had a superior corrosion resistance, much better than FeB and FeBSi coatings. It was attributed to the amorphous/nanocrystalline structure and the presence of corrosion-resistant element Cr.  相似文献   

16.
为提高AZ31B镁合金表面的耐腐蚀性能,用火焰喷涂方法在镁合金表面制备Al-Mg_2Si复合涂层。采用XRD、SEM和EDS分析涂层的物相组成、微观组织及元素分布;通过电化学试验测试样品在3.5%NaCl溶液中的腐蚀电位、腐蚀电流密度;通过3.5%NaCl溶液浸泡试验测试样品的腐蚀速率;并测试涂层的显微硬度。结果表明:涂层中的主要物相有Mg_2Si、Al,组织比较致密,元素分布均匀。Tafel极化曲线测试表明,Al-Mg_2Si涂层样品与AZ31B镁合金样品相比腐蚀电位从-1.489 V正移到-1.366 V,腐蚀电流密度从2.817×10~(-3) A/cm~2降低到1.198×10~(-3) A/cm~2。浸泡试验结果表明,喷涂Al-Mg_2Si的镁合金的腐蚀速率明显低于没有喷涂的镁合金。显微硬度测试表明,涂层的显微硬度集中分布在259~308 HV0.05之间,镁合金为50~60 HV0.05。因此在AZ31B镁合金表面火焰喷涂Al-Mg_2Si涂层可以提高其耐腐蚀性能,表面硬度显著提高。  相似文献   

17.
铁基非晶合金涂层制备及应用现状   总被引:2,自引:2,他引:0  
综述了铁基非晶涂层的制备技术、成形特征及显微结构,发现随着喷涂热输入的增大,涂层结构更致密,孔隙率下降,但是涂层中非晶含量降低,含氧量增加。概述了铁基非晶涂层的腐蚀性能、腐蚀行为、磨损机制的进展,并总结了铁基非晶涂层当前的工程应用现状,认为铁基非晶涂层的腐蚀性能取决于涂层化学成分和显微结构的均匀性。非晶含量越高,涂层的耐蚀耐磨性能越好;非晶的孔隙率越低,涂层的耐蚀耐磨性能更优异。但是非晶涂层的点蚀规律及机理尚未形成统一认识。依据非晶涂层的研究现状,提出了非晶涂层在制备、性能及相关机理方面存在的问题,展望了铁基非晶涂层的应用前景。  相似文献   

18.
ZM5镁合金无铬前处理化学镀镍层的性能   总被引:1,自引:0,他引:1  
采用优化的Na4P2O7+Na2SO4+NaNO3体系的化学蚀刻无铬前处理化学镀镍工艺,在ZM5镁合金上制备Ni-P镀层。利用扫描电镜、能谱仪、X射线衍射仪分析镀层的微观形貌、成分和相结构。通过电化学方法和摩擦磨损试验评价了镀层的耐蚀性和耐磨性。结果表明:无铬前处理工艺制备的镀层中P的质量分数为12.90%。与ASTM标准的含铬前处理工艺得到的镀层的耐蚀性和耐磨性相比,无铬前处理得到的镀层的自腐蚀电位为-0.506V,腐蚀电流密度为2.132×10-6 A/cm2,接近ASTM工艺含铬前处理得到的镀层的耐蚀性能;同时其磨损率为3.056×10-4 mg/s,与ASTM工艺的1.778×10-3 mg/s相比,其抗摩擦磨损性能明显优于含铬前处理的镀层。无铬前处理化学镀镍显著提高了ZM5镁合金的耐蚀性和耐磨性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号