首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
苏鹏  熊云  刘晓  杨鹤  范林君 《材料导报》2018,32(8):1258-1262
在SRV IV摩擦磨损试验机上,采用球-盘接触方式考察了不同载荷下碳烟颗粒在150SN基础油中的摩擦学性能。借助三维表面形貌仪、扫描电子显微镜、能谱仪、X射线光电子能谱仪及拉曼光谱探讨了载荷诱导的碳烟颗粒的减摩作用机理。结果表明,载荷对碳烟颗粒在150SN基础油中摩擦学特性有较大影响。低载荷时,碳烟颗粒可以改善基础油的抗磨性能;高载荷时,碳烟能够改善基础油的减摩性。载荷诱导的碳烟颗粒的减摩机理与其洋葱状的纳米结构有关,高载荷下碳烟颗粒外层的石墨微晶被剥离,在摩擦副表面形成了减摩层,使摩擦系数下降。  相似文献   

2.
The radiolysis of C60 in CCl4 has been studied in detail from the organic chemistry point of view. Solutions of C60 in CCl4 have been treated with γ radiation at 25, 50, 150, and 600 kGy, and the resulting products have been studied by electronic absorption spectroscopy, FT-IR spectroscopy, solid state 13C-MAS-NMR and by thermogravimetric analysis. The products have also been separated by liquid chromatographic analysis (HPLC). C60 undergoes a multiple trichloromethylation reaction and on average about 6 trichloromethyl radicals add to the fullerene cage. The trichloromethylation reaction is accompanied by the dimerization and trimerization of C60 fullerene. Also the oligomers appear to be trichloromethyl-substituted.

For reference the C60 solutions in CCl4 have also been photolyzed with UV light. Similar product as those observed in the radiolysis experiment have been detected. The main difference is that the photolysis products appear both chlorinated and trichloromethylated while the radiolysis product appear almost exclusively trichloromethylated.  相似文献   

3.
碳包覆铁纳米颗粒制备及电磁性能分析   总被引:5,自引:0,他引:5  
以纤维素为基质,硝酸铁为金属颗粒前躯体,在氢气保护下进行控温炭化合成出准球形的碳包覆铁纳米颗粒.产物通过TEM、EDX和XRD表征呈核壳结构,粒径分布比较窄.通过波导法对所制备的碳包覆铁纳米颗粒进行吸波性能分析,采用矢量网络仪研究分析其在8.2~12.4GHz频率范围内的电磁性能.  相似文献   

4.
The pathological aggregation of some proteins is claimed to be highly related to several human diseases, such as β-amyloid 1–42 (Aβ42) to Alzheimer's disease (AD), islet amyloid polypeptide, and insulin to type 2 diabetes mellitus. Therefore, it is in desperate need to develop effective methods for detection of protein aggregates and inhibition of abnormal aggregation. Herein, to construct all-in-one probe with both diagnosis and treatment potentials for protein aggregation diseases, Congo red (CR), a classical staining reagent with red fluorescence signal output for protein aggregates, is deliberately adopted to react with three different reductive carbon sources and ammonium persulfate to generate three CR-derived carbon dots (CDs). The obtained CDs exhibit the capabilities of turn-on red fluorescence imaging of protein aggregates, and/or inhibition of protein aggregation as well as scavenging of free radicals. Among them, CA-CDs, using citric acid as the reductive carbon source, demonstrate the superiority to the other two studied CDs in integrating all of these functions, and particularly exert excellent cytoprotection effect against toxic Aβ42 species, possessing tremendous potential in diagnosis and treatment of AD for future study. The present study paves a new way to develop all-in-one CDs for the protein disease research.  相似文献   

5.
Copper sulfide (CuS) nanoparticles have attracted increasing attention from biomedical researchers across the globe, because of their intriguing properties which have been mainly explored for energy‐ and catalysis‐related applications to date. This focused review article aims to summarize the recent progress made in the synthesis and biomedical applications of various CuS nanoparticles. After a brief introduction to CuS nanoparticles in the first section, we will provide a concise outline of the various synthetic routes to obtain different morphologies of CuS nanoparticles, which can influence their properties and potential applications. CuS nanoparticles have found broad applications in vitro, especially in the detection of biomolecules, chemicals, and pathogens which will be illustrated in detail. The in vivo uses of CuS nanoparticles have also been investigated in preclinical studies, including molecular imaging with various techniques, cancer therapy based on the photothermal properties of CuS, as well as drug delivery and theranostic applications. Research on CuS nanoparticles will continue to thrive over the next decade, and tremendous opportunities lie ahead for potential biomedical/clinical applications of CuS nanoparticles.  相似文献   

6.
以Fe纳米粒子(Fe NPs)为吸波剂,偶联剂KH550为表面改性剂,碳纤维(CFs)作为增强及电磁波反射相,环氧树脂(ER)作为基体,制备多种吸波平板并对其综合性能及相关机制进行研究。结果表明:平板的吸波性能随Fe NPs和CFs含量的增加而提高,吸收剂浓度梯度分布有助于形成特定频段的共振吸收;平板对电磁波损耗具有明显的各向异性,表现为CFs垂直电磁波入射方向时性能优于平行情况,当Fe NPs的含量为30%(质量分数,下同),CFs为5.52%,板厚为4.56mm时,最小反射损耗为-26.8dB(4.9GHz);同时,CFs可改善平板的抗弯性能,当Fe NPs为30%时,弯曲强度相比于纯树脂时仅降低了5.81%。  相似文献   

7.
金属对炭黑转化为洋葱状中空结构纳米碳的影响   总被引:2,自引:0,他引:2  
研究了炭黑分别在 Fe、Co、Ni 三种金属化合物作用下的催化转化行为, 以期使炭黑质点中不连续的无规则小石墨片层重新组装、构筑成洋葱状中空结构纳米碳. 采用透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)、X射线衍射(XRD)和Raman光谱分析表征了炭黑及其催化炭化产物的微观形貌和结构. 结果表明: 尽管三种金属催化剂均可通过溶碳-析出机制形成过渡态碳包覆纳米金属颗粒, 继而构筑成由准球形同心石墨壳层组合的洋葱状中空结构纳米碳, 但三种金属催化剂显示不同的催化效果, 终碳产物的形态和纯度差异较大, 其中以Fe 的催化效果最好.  相似文献   

8.
Abstract

Diels-Alder reactions allow the regioselective preparation of various derivatives of the [60]fullerene (1) with exohedral functionalization. A symmetric sixfold [2+4]-cycloaddition of 1,3-dienes to 1 opens direct synthetic access to hydrocarbons with a novel cyclophane structure.  相似文献   

9.
Diels-Alder reactions allow the regioselective preparation of various derivatives of the [60]fullerene (1) with exohedral functionalization. A symmetric sixfold [2+4]-cycloaddition of 1,3-dienes to 1 opens direct synthetic access to hydrocarbons with a novel cyclophane structure.  相似文献   

10.
In the last few decades, advances and breakthroughs of carbon materials have been witnessed in both scientific fundamentals and potential applications. The combination of carbon materials with traditional silicon semiconductors to fabricate solar cells has been a promising field of carbon science. The power conversion efficiency has reached 15–17% with an astonishing speed, and the diversity of systems stimulates interest in further research. Here, the historical development and state‐of‐the‐art carbon/silicon heterojunction solar cells are covered. Firstly, the basic concept and mechanism of carbon/silicon solar cells are introduced with a specific focus on solar cells assembled with carbon nanotubes and graphene due to their unique structures and properties. Then, several key technologies with special electrical and optical designs are introduced to improve the cell performance, such as chemical doping, interface passivation, anti‐reflection coatings, and textured surfaces. Finally, potential pathways and opportunities based on the carbon/silicon heterojunction are envisaged. The aspects discussed here may enable researchers to better understand the photovoltaic effect of carbon/silicon heterojunctions and to optimize the design of graphene‐based photodevices for a wide range of applications.  相似文献   

11.
12.
13.
Exploitation and utilization of sustainable energy sources has increasingly become the common theme of global social development, which has promoted tremendous development of energy conversion devices/technologies. Owing to excellent and unique optical/electrical properties, carbon dots (CDs) have attracted extensive research interest for numerous energy conversion applications. Strong absorption, downconversion photoluminescence, electron acceptor/donor characteristics, and excellent electron conductivity endow CDs with enormous potential for applications in optoelectronic devices. Furthermore, excellent electron transfers/transport capacities and easily manipulable structural defects of CDs offer distinct advantages for electrocatalytic applications. Recent advances in CD‐based energy conversion applications, including optoelectronic devices such as light‐emitting diodes and solar cells, and electrocatalytic reactions including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and carbon dioxide reduction reaction, are summarized. Finally, current challenges and future prospects for CD‐based energy conversion applications are proposed, highlighting the importance of controllable structural design and modifications.  相似文献   

14.
15.
The exploration of an old drug for new biomedical applications has an absolute predominance in shortening the clinical conversion time of drugs for clinical application. In this work, carbon nanoparticles suspension injection (CNSI), the first clinically approved carbon nanoparticles in China, is explored as a new nano‐radioprotective agent for potent intestinal radioprotection. CNSI shows powerful radioprotective performance in the intestine under oral administration, including efficient free radical scavenging ability, good biosafety, high chemical stability, and relatively long retention time. For example, CNSI shows high reactive oxygen species (ROS) scavenging activities, which effectively alleviates the mitochondrial dysfunction and DNA double‐strand breaks to protect the cells against radiation‐induced damage. Most importantly, this efficient ROS scavenging ability greatly helps restrain the apoptosis of the small intestinal epithelial and crypt stem cells, which decreases the damage of the mechanical barrier and thus relieves radiation enteritis. Moreover, CNSI helps remove the free radicals in the intestinal microenvironment and thus maintain the balance of intestinal flora so as to mitigate the radiation enteritis. The finding suggests a new application of clinically approved carbon nanoparticles, which not only promotes the development of new intestinal radioprotector, but also has a great potential for clinical transformation.  相似文献   

16.
Graphitic carbon nitride (g‐CN) has been utilized as a heterogeneous catalyst, but is usually not very well dispersible. The amphiphilic character of g‐CN can be altered by surface modifications of g‐CN nanopowders. Introducing hydrophilicity or hydrophobicity is a promising avenue for producing advanced emulsion systems. In this study, a special surface‐modified g‐CN is used to form stable Pickering emulsions. Using a PDMS‐based microfluidic device designed for stable production of both single and double emulsions, it is shown that surface‐modified g‐CNs allow the manufacture of unconventionally stable and precise Pickering emulsions. Shell thickness of the double emulsions is varied to emphasize the robustness of the device and also to demonstrate the extraordinary stabilization brought by the surface‐modified carbon nitride used in this study. Due to the electrostatic stabilization also in the oil phase, double emulsions are centered. Finally, when produced from polymerizable styrene, hollow polymer microparticles are formed with precise and tunable sizes, where g‐CN is utilized as the only stabilizer and photoinitiator.  相似文献   

17.
18.
A mesoporous ZnO/carbon composite is designed for coimmobilization of two oxidoreductases involving a novel “kiwifruit‐assembly” pattern. The coimmobilization of (S)‐carbonyl reductase II‐glucose dehydrogenase on nanoparticles (SCRII–GDHnano) exhibits 40–50% higher specific activity than the free enzyme and significantly improves stabilities of enzymes to heat, pH and solvents. It performs asymmetric catalysis of 75 × 10?3m substrate with a perfect yield of 100% and an excellent enantioselectivity of 99.9% within 1 h. SCRII–GDHnano gives an over 72% yield and 99.9% enantioselectivity after it is reused for ten times. Even with a highly concentrated (400 × 10?3m ) substrate, it shows about 60% yield and 99.9% enantioselectivity within 4 h. SCRII–GDHnano presents 4.5–8.0‐fold higher productivity in 2.0–8.0‐fold shorter reaction time than the free enzyme. This work provides a general, facile, and unique approach for the immobilization of two oxidoreductases and gives high catalytic efficiency, long‐term and good recycling stabilities by triggering radical proton‐coupled electron transfer.  相似文献   

19.
3D cube‐shaped composites and carbon microparticles with hierarchically porous structure are prepared by a facile template‐free synthesis route. Via the coordination of zinc acetate dihydrate and squaric acid, porous 3D cubic crystalline particles of zinc squarate can be obtained. These are easily transformed into the respective zinc oxide carbon composites under preservation of the macromorphology by heat treatment. Washing of the composite materials results in hierarchically porous carbons with high surface areas (1295 m2 g–1) and large pore volumes (1.5 cm3 g?1) under full retention of the cube‐like architecture of the initial crystals. The materials are shown to be promising electrode materials for supercapacitor applications with a specific capacitance of 133 F g?1 in H2SO4 at a scan rate of 5 mV s?1, while 67% of this specific capacitance is retained, when increasing the scan rate to 200 mV s?1.  相似文献   

20.
Aligned, ultralong single‐walled carbon nanotubes (SWNTs) represent attractive building blocks for nanoelectronics. The structural uniformity along their tube axis and well‐ordered two‐dimensional architectures on wafer surfaces may provide a straightforward platform for fabricating high‐performance SWNT‐based integrated circuits. On the way towards future nanoelectronic devices, many challenges for such a specific system also exist. This Review summarizes the recent advances in the synthesis, identification and sorting, transfer printing and manipulation, device fabrication and integration of aligned, ultralong SWNTs in detail together with discussion on their major challenges and opportunities for their practical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号