首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of a study on the analytical identification and quantification of migration of chemicals from plastics baby bottles found in the European Union market made of materials that are now present as substitutes for polycarbonate (PC) are reported. A total of 449 baby bottles with a focus on first age or sets of bottles were purchased from 26 European Union countries, Canada, Switzerland and the USA. From this collection, which contained several duplicates, a total of 277 baby bottles were analysed. The materials included different types of plastic such as PC, polyamide (PA), polyethersulphone (PES), polypropylene (PP), but also silicone, and from the United States a co-polyester marketed under the trade name Tritan?. The bottles were subjected to the conventional migration test for hot fill conditions, i.e. 2?h at 70°C. The simulant used was that specified in European Union legislation (2007/19/EC) for milk, i.e. 50% ethanol. In a first phase 1, migration was conducted since the scope of this investigation was a screening rather than a true compliance testing check. Second and third migrations were performed on selected articles when migrated substances exceeded limits specified in the legislation. In order to verify some materials, a portion of the bottle was cut to run an FT-IR fingerprint to confirm the nature of the polymer. The migration solutions in general showed a low release of substances. Results showed that bottles made of PP and silicones showed a greater number of substances in the migration solutions and in greater quantity. Chemicals from PP included alkanes, which could be found in >65% of the bottles at levels up to 3500?µg?kg?1; and benzene derivatives in 17% of the baby bottles and found at levels up to 113?µg?kg?1. Some substances were found on a regular basis such as plasticisers, esters and antioxidants (e.g. tris(2,4-di-tert-butylphenyl)phosphate, known as Irgafos 168. Some substances found were not included in the Community positive list, which means that those should not be found even in the first migration. Such substances included 2,6-di-isopropylnaphthalene (DIPN), found in 4% of the bottles at levels up to 25?µg?kg?1, 2,4-di-tert-butyl phenol (in 90% of the bottles at levels up 400?µg?kg?1). Moreover, bisphenol A (BPA) was detected and quantified in baby bottles made of PA, but limited to one brand and model specific (but labelled BPA free). Results for baby bottles made of silicone also indicated the presence of components, e.g. potentially coming from inks (benzophenone, diisopropyl naphtahalene – DIPN, which could come for example from the presence of instruction leaflets in the bottles). In the case of silicone, phthalates were also found in relevant concentrations, with levels for DiBP and DBP from the first migration test of 50–150?µg?kg?1 and DEHP at levels 25–50?µg?kg?1.  相似文献   

2.
During the last decade the safety of bisphenol A (BPA) monomer in polycarbonate baby bottles has drawn the attention of both the public and the scientific community. This paper presents the results of BPA migration from polycarbonate baby bottles bought in the Spanish market, into simulant B (3% acetic acid), 50% ethanol and into real food (reconstituted infant formula). Furthermore, it was also the objective of this study to assess the suitability of 50% ethanol as a simulant for infant formula. BPA was analysed by a multi-analyte liquid chromatography method with fluorescence detection and mass spectrometry confirmation. The method was in-house validated and accredited by the national accreditation body. The validation results for this analyte in the previous mentioned matrices were: LOD?=?0.004–0.007?mg?kg–1; LOQ (validated)?=?0.03?mg?kg–1; RSD%?=?3.4–5.8; and recovery?=?106.6–118.2%. A collection of 72 different baby bottle samples from 12 different brands were analysed. Baby bottle material was identified by FTIR. The migration test conditions used were those recommended for baby bottles in the Guidelines on testing conditions for articles in contact with foodstuffs (with a focus on kitchenware), prepared by the European network of laboratories for food-contact materials. In most of the migration assays the results were below the LOD. In four of the commercial brands there was detectable migration into the simulant 50% ethanol and BPA was detected in only two samples of infant formula (0.01?mg?kg–1). Migration results obtained were in compliance with European Union regulations.  相似文献   

3.
The results of a study on the analytical identification and quantification of migration of chemicals from plastics baby bottles found in the European Union market made of materials that are now present as substitutes for polycarbonate (PC) are reported. A total of 449 baby bottles with a focus on first age or sets of bottles were purchased from 26 European Union countries, Canada, Switzerland and the USA. From this collection, which contained several duplicates, a total of 277 baby bottles were analysed. The materials included different types of plastic such as PC, polyamide (PA), polyethersulphone (PES), polypropylene (PP), but also silicone, and from the United States a co-polyester marketed under the trade name Tritan?. The bottles were subjected to the conventional migration test for hot fill conditions, i.e. 2?h at 70°C. The simulant used was that specified in European Union legislation (2007/19/EC) for milk, i.e. 50% ethanol. In a first phase 1, migration was conducted since the scope of this investigation was a screening rather than a true compliance testing check. Second and third migrations were performed on selected articles when migrated substances exceeded limits specified in the legislation. In order to verify some materials, a portion of the bottle was cut to run an FT-IR fingerprint to confirm the nature of the polymer. The migration solutions in general showed a low release of substances. Results showed that bottles made of PP and silicones showed a greater number of substances in the migration solutions and in greater quantity. Chemicals from PP included alkanes, which could be found in >65% of the bottles at levels up to 3500?μg?kg?1; and benzene derivatives in 17% of the baby bottles and found at levels up to 113?μg?kg?1. Some substances were found on a regular basis such as plasticisers, esters and antioxidants (e.g. tris(2,4-di-tert-butylphenyl)phosphate, known as Irgafos 168. Some substances found were not included in the Community positive list, which means that those should not be found even in the first migration. Such substances included 2,6-di-isopropylnaphthalene (DIPN), found in 4% of the bottles at levels up to 25?μg?kg?1, 2,4-di-tert-butyl phenol (in 90% of the bottles at levels up 400?μg?kg?1). Moreover, bisphenol A (BPA) was detected and quantified in baby bottles made of PA, but limited to one brand and model specific (but labelled BPA free). Results for baby bottles made of silicone also indicated the presence of components, e.g. potentially coming from inks (benzophenone, diisopropyl naphtahalene - DIPN, which could come for example from the presence of instruction leaflets in the bottles). In the case of silicone, phthalates were also found in relevant concentrations, with levels for DiBP and DBP from the first migration test of 50-150?μg?kg?1 and DEHP at levels 25-50?μg?kg?1.  相似文献   

4.
During the last decade the safety of bisphenol A (BPA) monomer in polycarbonate baby bottles has drawn the attention of both the public and the scientific community. This paper presents the results of BPA migration from polycarbonate baby bottles bought in the Spanish market, into simulant B (3% acetic acid), 50% ethanol and into real food (reconstituted infant formula). Furthermore, it was also the objective of this study to assess the suitability of 50% ethanol as a simulant for infant formula. BPA was analysed by a multi-analyte liquid chromatography method with fluorescence detection and mass spectrometry confirmation. The method was in-house validated and accredited by the national accreditation body. The validation results for this analyte in the previous mentioned matrices were: LOD = 0.004-0.007 mg kg(-1); LOQ (validated) = 0.03 mg kg(-1); RSD% = 3.4-5.8; and recovery = 106.6-118.2%. A collection of 72 different baby bottle samples from 12 different brands were analysed. Baby bottle material was identified by FTIR. The migration test conditions used were those recommended for baby bottles in the Guidelines on testing conditions for articles in contact with foodstuffs (with a focus on kitchenware), prepared by the European network of laboratories for food-contact materials. In most of the migration assays the results were below the LOD. In four of the commercial brands there was detectable migration into the simulant 50% ethanol and BPA was detected in only two samples of infant formula (0.01 mg kg(-1)). Migration results obtained were in compliance with European Union regulations.  相似文献   

5.
An enforcement campaign was carried out to assess the migration of 2-butoxyethyl acetate (2-BEA) from polycarbonate infant feeding bottles intended for repeated use. Migration was measured by three successive migration tests into two of the European Union official food simulants: distilled water and 3% acetic acid testing at 40°C for 10 days. The Danish Veterinary and Food Administration (DVFA) has assessed that a migration above 0.33 mg for 2-BEA and a group of eight related substances kg-1 foodstuff from plastics articles used exclusively for infants is unacceptable. Migration of 2-BEA was found from eight of 12 bottles. However, migration above the target value of 0.33 mg kg-1 was not observed in the third decisive test from any of the 12 different brands of polycarbonate feeding bottles. A migration of between 0.05 and 0.26 mg kg-1 from seven of 12 bottles was measured to 3% acetic acid in the third test, whereas no migration to distilled water was observed in the third test. The average recovery of 2-BEA after the 10-day exposure at the target value of 0.33 mg kg-1 was 77% into distilled water and 36% into 3% acetic acid. The limited recovery was understandable as 2-BEA was partly hydrolysed in the aqueous food simulants and 2-butoxyethanol, a hydrolysis product and one of the related substances was identified. Quantification was carried out using gas chromatography after liquid/liquid extraction of the food simulant.  相似文献   

6.
This work investigated if overall migration test procedures could also be used to test for the migration of specific substances from plastics. The overall migration test procedure used was the evaporative gravimetric method used with volatile food simulants. Thirty food-contact substances (additives and monomers) were tested for their chemical stability and volatile loss during the heated evaporation stage of the overall migration procedure. Eighteen of the 30 were determined in an acceptable yield. It is concluded that in the list of approximately 620 European Union substances that have specific migration limits of 5 mg kg?1 or higher, and based on considerations of stability and volatility, more than half could be amenable to control using overall migration methodology. This is particularly the case for inert plastics with low intrinsic overall migration values of oligomers. This means that based on the overall migration test result found, testing laboratories could decide on a case-by-case basis if known additives and starting substances are covered by the overall migration result and no separate testing would be required for specific migration, with time and resource cost savings.  相似文献   

7.
Overall migration from a wide range of commercial plastics-based netting materials destined to be used as either meat or vegetable packaging materials into the fatty food simulant isooctane or the aqueous simulant distilled water, respectively, was studied. In addition, sensory tests of representative netting materials were carried out in bottled water in order to investigate possible development of off-odour/taste and discoloration in this food simulant as a result of migration from the netting material. Sensory tests were supplemented by determination of the volatile compounds' profile in table water exposed to the netting materials using SPME-GC/MS. Test conditions for packaging material/food simulant contact and method of overall migration analysis were according to European Union Directives 90/128 (EEC, 1990) and 2002/72 (EEC, 2002). The results showed that for both PET and polyethylene-based netting materials, overall migration values into distilled water ranged between 11.5 and 48.5 mg l-1, well below the upper limit (60 mg l-1) for overall migration values from plastics-packaging materials set by the European Union. The overall migration values from netting materials into isooctane ranged between 38.0 and 624.0 mg l-1, both below and above the European Union upper limit for migration. Sensory tests involving contact of representative samples with table water under refluxing (100°C/4 h) conditions showed a number of the netting materials produced both off-odour and/or taste as well as discoloration of the food simulant rendering such materials unfit for the packaging of foodstuffs in applications involving heating at elevated temperatures. GC/MS analysis showed the presence of numerous volatile compounds being produced after netting materials/water contact under refluxing conditions. Although it is extremely difficult to establish a clear correlation between sensory off-odour development and GC/MS volatile compounds' profile, it may be postulated that plastics oxidation products such as hexanal, heptanal, octanal and 2,6 di-tert-butylquinone may contribute to off-odour development using commercially bottled table water as a food simulant. Likewise, compounds such as carbon disulfide, [1,1'-biphenyl]-2-ol and propanoic acid, 2 methyl 1-(1,1-dimethyl)-2-methyl-1,3-propanediyl ester probably originating from cotton and rubber components of netting materials may also contribute to off-odour/taste development.  相似文献   

8.
Polyamides (PAs) are used in the production of various food contact materials (FCMs) and articles such as kitchen utensils and packaging material. Cyclic oligomers have been identified as potential migrants from PA. This study describes the development, validation and application of a multi-oligomer analytical method based on LC-ESI-MS/MS for the identification and quantification of eight cyclic oligomers of PA 6 and four PA 66 migrating from FCMs into food simulant B (3% acetic acid) and beverages. It was proved that doubly charged precursor ions of the cyclic PA 6 and PA 66 oligomers above a mass of 500 Da are formed during the ionisation process of the electrospray technique used. Direct injection of a diluted food simulant into the LC-ESI-MS/MS system after migration makes the validated method a valuable tool for investigating migration of cyclic PA oligomers. The validation results demonstrate that the multi-oligomer method is applicable for the analysis of cyclic PA 6 and PA 66 oligomers in food simulant B. For all investigated cyclic PA oligomers, detection limits were in the range of 0.1–1.1 µg/l. Linearity (r2 ≥ 0.99), trueness values between 91% and 122%, and intra-day (RSDr < 10%) and inter-day precision (RSDR < 19%) were determined and satisfied validation criteria set out by the European Reference Laboratory for FCMs. The method was extended to tap water and tea. Finally, the multi-oligomer method was successfully applied to determine cyclic PA oligomers in migration solutions originating from different PA FCMs. In all migration solutions, concentrations of cyclic PA oligomers were determined above the LOQ. A preliminary risk assessment based on in silico tools was performed. The results demonstrate the urgent need for toxicological data that would facilitate the evaluation of the health risk of cyclic PA oligomers.  相似文献   

9.
An internet website (http://cpf.jrc.it/smt/) has been produced as a means of dissemination of methods of analysis and supporting spectroscopic information on monomers and additives used for food contact materials (principally packaging). The site which is aimed primarily at assisting food control laboratories in the European Union contains analytical information on monomers, starting substances and additives used in the manufacture of plastics materials. A searchable index is provided giving PM and CAS numbers for each of 255 substances. For each substance a data sheet gives regulatory information, chemical structures, physico-chemical information and background information on the use of the substance in particular plastics, and the food packaging applications. For monomers and starting substances (155 compounds) the infra-red and mass spectra are provided, and for additives (100 compounds); additionally proton NMR are available for about 50% of the entries. Where analytical methods have been developed for determining these substances as residual amounts in plastics or as trace amounts in food simulants these methods are also on the website. All information is provided in portable document file (PDF) format which means that high quality copies can be readily printed, using freely available Adobe Acrobat Reader software. The website will in future be maintained and up-dated by the European Commission's Joint Research Centre (JRC) as new substances are authorized for use by the European Commission (DG-ENTR formerly DGIII). Where analytical laboratories (food control or other) require reference substances these can be obtained free-ofcharge from a reference collection housed at the JRC and maintained in conjunction with this website compendium.  相似文献   

10.
The results from a single laboratory that took part in a series of check-sample exercises for overall migration were used to calculate the measurement uncertainty for the overall migration methodology. The results span 10 years of proficiency testing and cover a range of plastic materials tested using a variety of time and temperature test conditions. Twelve sets of results for overall migration into olive oil and 10 sets of results for overall migration into volatile simulants were used. The measurement uncertainty associated with the determination of overall migration from plastics into olive oil was estimated as ± 2.6 mg dm-2 for results between 1.2 and 15.4 mg dm-2. The measurement uncertainty associated with the determination of overall migration into volatile simulants was estimated as ± 1.4 mg dm-2 for results between 2.1 and 13 mg dm-2. These estimates are within the analytical tolerances set in European Union regulations, of 3 and 2 mg dm-2, respectively. The performance of all laboratories participating in these 22 check sample exercises was also evaluated. A very large majority (93%) of the participants used official test methods, sometimes with minor modifications as stated. For the simulant olive oil, an average of 81% of laboratories (13 rounds with an average of 21 participants in each) using official methods was within the tolerance specified in regulations. For the volatile food simulants, an average of 87% of laboratories (11 rounds with an average of 38 participants in each) using official methods was within the tolerance specified. It is concluded from this evaluation of within- and between-laboratory data that the official European Standard methods for overall migration testing are suitable for the analysis of routine samples.  相似文献   

11.
Resins based on melamine-formaldehyde and related analogues such as methylolated melamine are used to cross-link coatings used inside food cans and on the metal closures of glass jars. Thirteen commercially coated cans and closures representing 80% of the European market were tested using simulants under realistic industrial heat-processing conditions for canned and jarred foods. The food simulants and the retort conditions used were 3% acetic acid for 1?h at 100°C and 10% ethanol for 1?h at 130°C. The highest migration level seen for melamine into simulant was 332?µg?kg?1. There was no detectable migration of the melamine analogues cyanuric acid (<1?µg?kg?1) or ammelide (<5?µg?kg?1) from any sample. Twelve of the thirteen samples released no detectable ammeline (<5?µg?kg?1) but the coating giving the highest release of melamine did also release ammeline at 8?µg?kg?1 with the higher of the two process temperatures used. Migration experiments into food simulant and foods themselves were then conducted using two experimental coatings made using amino-based cross-linking resins. Coated metal panels were exposed to the food simulant 10% (v/v) aqueous ethanol and to three foodstuffs under a range of time and temperature conditions both in the laboratory and in a commercial food canning facility using proprietary time and temperature conditions. The highest migration into a food was 152?µg?kg?1 from the first coating processed for a long time at a moderate sterilisation temperature. The highest migration into simulant was also from this coating at 220?µg?kg?1 when processed at 134°C for 60?min, dropping to 190?µg?kg?1 when processed at 123°C for 70?min. Migration from the second coating was quite uniformly two to three times lower under all tests. These migration results were significantly higher than the levels of melamine extractable using 95% ethanol at room temperature. The experiments show that commercial canning and retorting can be mimicked in an acceptable way using laboratory tests with an autoclave or a simple pressure cooker. The results overall show there is hydrolytic degradation of the melamine cross-linked resins to release additional melamine. There is a strong influence of the temperature of heat treatment applied with foods or simulants but only a minor influence of time of heating and only a minor influence, if any, of food/simulant acidity.  相似文献   

12.
Four samples of paper and board (P/B) of a type used for packaging dry foods were subjected to migration tests using mushrooms, apples, potatoes and bananas, and using the polymeric powder Tenax? as a food simulant. The P/B samples contained only low levels of diisopropylnaphthalene (DiPN) and diisobutyl phthalate (DiBP) and so the experiments were conducted after impregnating the P/B with added model substances. These were o-xylene, acetophenone, dodecane, benzophenone, DiPN and DiBP. Migration levels depended strongly on the nature of the substance and on the nature of the food and much less on the characteristics of the P/B, except insofar as they affected the contact area – flexible papers giving more extensive contact with the food than thick rigid board. Migration into Tenax? was at least a factor of 10 higher than migration into the fresh fruit and vegetables. The food samples were placed in contact with the P/B and then overwrapped loosely with aluminium foil and so this correction factor will tend to be conservative compared with a more open storage of the packed foods. Washing, peeling or cooking the fruits and vegetables after contact with the P/B had a surprisingly small effect on contaminant levels in general, and no one processing step was effective in giving a significant reduction of all the types of chemicals studied. This was because either they had penetrated into the food (so resisting peeling), or were not freely water-soluble (so resisting washing) or were not particularly volatile (so resisting loss by evaporation during cooking).  相似文献   

13.
Experiments have been carried out with (a) microwave treatment of plastics followed by migration testing using the food simulant, olive oil, and (b) microwave treatment of plastics in direct contact with an organic extractant (iso-octane). In neither of these complementary approaches was there evidence of any difference in migration from plastics that had been microwave-treated compared with plastics that had received an equivalent thermal treatment. Five plastics commonly employed in microwave applications were tested and oligomers, plasticizer, antioxidant and volatile contaminants were monitored as representatives of typical migration species.  相似文献   

14.
This study investigates the potential migration of plasticisers, plastic components and additives from several plastic water bottles. Compounds studied were phthalates (dimethyl phthalate, di-n-butyl phthalate, benzylbutyl phthalate, bis(2-ethylhexyl) phthalate), bis(2-ethylhexyl) adipate, octylphenol, 4-nonylphenol and bisphenol A. Polycarbonate (PC), high-density polyethylene (HDPE), low-density polyethylene (LDPE), polyethylene terephthalate (PET) and polystyrene (PS) plastics used in the water bottling sector were tested using three kinds of total or specific migration tests: (1) standard method UNE-EN ISO 177; (2) ultrasonic forced extraction; and (3) standard method UNE-EN 13130 UNE-EN 13130. 2005. Materials and articles in contact with foodstuffs – plastics substances subject to limitation. Part 1: guide to test methods for the specific migration of substances from plastics to foods and food stimulants and the determination of substances in plastics and the selection of conditions of exposure to food simulants.  [Google Scholar]-1. In addition, bottled waters contained in different plastic materials were analysed to determine the potential migration of target compounds in real conditions. In all cases, samples were solid-phase extracted using Oasis HLB 200?mg cartridges and analysed using GC-MS in scan-acquisition mode. Bisphenol A and 4-nonylphenol were detected in incubated samples, indicating that migration from food plastics can occur at the experimental conditions tested. The total daily intake was calculated according to the levels detected in bottled water and the assessment of the consumers’ risk was evaluated taking into consideration toxicological and legislative values.  相似文献   

15.
The migration rule of bisphenol-A-related compounds from can coatings into canned food and oil-based simulant was explored, and the quantification and confirmation of these compounds were performed with an ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). The correlation between the molecular weight, migration time, the initial concentration and the migration level of contaminants was investigated. A quantitative structure–property relationship (QSPR) model of migration was established corresponding to the migration of these migrants in the oily simulant at 55 °C, which served as an accelerated shelf life testing (ASLT) with the use of elevated temperature to simulate long-term storage at room temperature. The correlation coefficient (R), leave-one-out cross-validation coefficient (R LOO) and external validation coefficient (Q ext) for the established model were all above 0.9000. What is more, application of the developed model was tentatively validated with three oily canned foods, whose results showed that the model can play an important role in providing a reference for the estimation of migration behavior of bisphenol-A-related compounds in canned food.  相似文献   

16.
An HPLC method with fluorescence detection has been developed and validated for the quantification of six fluorescent whitening agents (FWA) in plastic beverage cups after extraction and in food simulants after migration at 70°C for 2 h. The sensitivity of the method was high with LODs ranging from 0.053 to 0.251 μg kg?1 and LOQs from 0.107 to 0.504 μg kg?1. Accuracy and precision were highly acceptable, with recoveries greater than 82% and RSDs (%) below 16%. The expanded combined uncertainty was found to be less than 23% for the measurements of all studied FWAs. In extracting the analytes from food contact materials (FCM), accelerated solvent extraction (ASE) and Soxhlet extraction were applied using ethanol as the extraction solvent. The results obtained for FWA in 10 different food plastic cups, made from different polymers, were compared. The ASE technique proved to be faster, more effective and efficient than Soxhlet extraction. Migration tests with official food simulants from Regulation (EU) No 10/2011 showed that the substances studied could potentially migrate using the selected migration conditions. The most pronounced effect was observed in case of simulant D1 (50% w/v ethanol in water). The analytical method proved to be a simple, fast, sensitive and reliable tool for the simultaneous quantification of six of the most used FWAs in both FCM extracts and food simulants after migration experiments.  相似文献   

17.
The overall migration from a wide range of commercial five-layer coextruded packaging films into aqueous food simulants (distilled water, 3% aqueous acetic acid) and alternative fatty food simulant (iso-octane) was studied. The overall migration from commercial plastics cups (PS, HIPS, and PP) used for ice-cream or yogurt packaging into distilled water and 3% aqueous acetic acid was also studied. Test conditions for packaging material/food simulant contact and method of overall migration analysis were according to the EU directives and CEN-standards. The results showed that for all tested five-layer films and plastics (PS, HIPS, and PP) cups values of overall migration into aqueous simulants (0.11-0.79 mg/dm2, 2.3-15.9 mg/l) and (<0.10-0.41 mg/dm2, <0.80-3.1 mg/l) were significantly lower than the upper limit (10 mg/dm2) for overall migration from plastic packaging materials and articles into food and food simulants set by the EU Directive 90/128/EEC and their revisions. The overall migration values from five-layer materials into iso-octane were significantly higher (0.94-8.23 mg/dm2, 18.8-164.7 mg/l) than the above values but are still lower than the upper limit for overall migration. Global migration values of five-layer films into aqueous food simulants seems to be independent of material thickness. In contrast, overall migration into iso-octane increases with film thickness.  相似文献   

18.
Carbon black was investigated to assess and quantify the possibility that nanoparticles might migrate out of plastic materials used in the food packaging industry. Two types of carbon black were incorporated in low-density polyethylene (LDPE) and polystyrene (PS) at 2.5% and 5.0% loading (w/w), and then subjected to migration studies. The samples were exposed to different food simulants according to European Union Plastics Regulation 10/2011, simulating long-term storage with aqueous and fatty foodstuffs. Asymmetric flow field-flow fractionation (AF4) coupled to a multi-angle laser light-scattering (MALLS) detector was used to separate, characterise and quantify the potential release of nanoparticles. The AF4 method was successful in differentiating carbon black from other matrix components, such as extracted polymer chains, in the migration solution. At a detection limit of 12 µg kg?1, carbon black did not migrate from the packaging material into food simulants. The experimental findings are in agreement with theoretical considerations based on migration modelling. From both the experimental findings and theoretical considerations, it can be concluded that carbon black does not migrate into food once it is incorporated into a plastics food contact material.  相似文献   

19.
Bisphenol A diglycidyl ether (BADGE) and its reaction products with water and hydrochloric acid have recently been subject to new regulations concerning their migration from food packaging into foodstuff. A method for the simultaneous identification and quantification of these substances and their precursor bisphenol A in food is described introducing bisphenol A di-(3-hydroxypropyl)ether as an internal standard. Analysis was carried out using RP-HPLC gradient elution with fluorescence detection. Additional information in the case of suspect samples was obtained using RP-HPLC with mass selective detection. The described method is validated for the analysis of foodstuffs as well as fatty food simulants. The limits of detection were between 10 and 30 µg/kg of food; recovery experiments gave identical behaviour for all analytes and the internal standard. The enforcement of the specific migration limit set by regulatory standards of the European Union for BADGE and its hydrolysis and hydrochlorination products is possible for producers as well as food quality surveillance institutions.  相似文献   

20.
A variety of melaware articles were tested for the migration of melamine into the food simulant 3% w/v acetic acid as a benchmark, and into other food simulants, beverages and foods for comparison. The results indicate that the acidity of the food simulant plays a role in promoting migration, but not by as much as might have been anticipated, since 3% acetic acid gave migration values about double those obtained using water under the same time and temperature test conditions. In contrast, migration into the fatty food simulant olive oil was not detectable and at least 20-fold lower than with the aqueous food simulants. This was expected given the solubility properties of melamine and the characteristics of the melaware plastic. Migration levels into hot acidic beverages (apple juice, tomato juice, red-fruit tea and black coffee) were rather similar to the acetic acid simulant when the same time and temperature test conditions are used, e.g. 2?h at 70°C. However, migration levels into foods that were placed hot into melaware articles and then allowed to cool on standing were much lower (6–14 times lower) than if pre-heated food was placed into the articles and then maintained (artificially) at that high temperature in the same way that a controlled time–temperature test using simulants would be conducted. This very strong influence of time and especially temperature was manifest in the effects seen of microwave heating of food or beverage in the melaware articles. Here, despite the short duration of hot contact, migration levels were similar to simulants used for longer periods, e.g. 70°C for 2?h. This is rationalized in terms of the peak temperature achieved on microwave heating, which may exceed 70°C, counterbalancing the shorter time period held hot. There was also evidence that when using melaware utensils in boiling liquids, as for stovetop use of spatulas, the boiling action of circulating food/simulant can have an additional effect in promoting surface erosion, increasing the plastic decomposition and so elevating the melamine release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号