首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inspired by biological systems in which damage triggers an autonomic healing response, a polymer composite material that can heal itself when cracked has been developed. In this work, compression and tensile properties of a self-healed fibre reinforced epoxy composites were investigated. Microencapsulated epoxy and mercaptan healing agents were incorporated into a glass fibre reinforced epoxy matrix to produce a polymer composite capable of self-healing. The self-repair microcapsules in the epoxy resin would break as a result of microcrack expansion in the matrix, and letting out the strong repair agent to recover the mechanical strength with a relative healing efficiency of up to 140% which is a ratio of healed property value to initial property value or healing efficiency up to 119% if using the healed strength with the damaged strength.  相似文献   

2.
This study considers the embedment of a bioinspired vasculature within a composite structure that is capable of delivering functional agents from an external reservoir to regions of internal damage. Breach of the vascules, by propagating cracks, is a crucial pre-requisite for such a self-healing system to be activated. Two segregated vascule fabrication techniques are demonstrated, and their interactions with propagating Mode I and II cracks determined. The vascule fabrication route adopted played a significant role on the resulting laminate morphology which in-turn dictated the crack-vascule interactions. Embedment of the vascules did not lower the Mode I or II fracture toughness of the host laminate, with vascules orientated transverse to the crack propagation direction leading to significant increases in GI and GII through crack arrest. Large resin pockets were found to redirect the crack around the vascules under Mode II conditions, therefore, it is recommended to avoid this configuration for self-healing applications.  相似文献   

3.
纤维增强聚合物基复合材料的低温性能   总被引:2,自引:0,他引:2  
对纤维增强聚合物基复合材料在低温领域的实际应用进行了分类介绍,通过对纤维增强聚合物基复合材料的低温性能、性能影响因素和作用机理、低温应用安全性等方面的研究工作进行总结,突出各类纤维增强聚合物基复合材料低温下的性能优势,阐明了材料性能的不足之处及相应改进措施.对于实际低温应用中纤维增强聚合物基复合材料的选择、性能设计优化,系统安全性的增强提供了参考作用.  相似文献   

4.
This paper investigates the flexural properties of self-compacting fibre reinforced cementitious composites that contain high fly ash volume. Seven types of fibres were compared at the same volume fraction and in similar matrices containing high-volume fly ash and having a high compressive strength of around 85 MPa at 28 days. Third-point bending test was conducted on beam specimens to obtain their load–deflection curves, and investigate their fracture behaviour, flexural strength, deflection and toughness. The results showed that using straight steel and micro-polyvinyl alcohol fibres produced composites demonstrating stable deflection-hardening with multiple-cracking phenomenon. This behaviour resulted in high flexural strength, along with large maximum deflection and toughness values, which are important for applications in cementitious composites. This study indicates that fibres with both sufficiently high aspect ratio and high tensile strength are necessary for achieving deflection-hardening in self-compacting cementitious composites with high-strength matrices containing high-volume fly ash.  相似文献   

5.
Realising autonomous healing in advanced composite structures requires a detailed understanding of the damage profile to be repaired. Quantifying the damage volume and mapping its through-thickness location is key to ensuring that the delivery infrastructure can supply sufficient healing to critical locations whilst maximising coverage and minimising structural cost. In this study micro-X-ray computer tomography (μCT) was used to determine the damage volume in quasi-isotropic carbon fibre reinforced plastic (CFRP) laminates subjected to low velocity impacts. The laminates incorporated a layer of hollow glass fibres (HGFs) at either the 3rd or 13th interface for the purpose of delivering a self-healing agent. Analysis of the μCT data indicated that HGF inserted at interface 3 (near back face) altered the through-thickness damage map whilst visualisation of the HGF at both interfaces indicated low levels of HGF fracture.  相似文献   

6.
Recently there has been an increasing interest in self-healing materials which have the ability to retrieve their physico-mechanical properties once the material is damaged. This paper presents a numerical model for the self-healing capacity of cementitious composites capable of simulating the recovery of mechanical properties of the damaged (cracked) material. The recent SMM (Solidification-Microprestress-Microplane model M4) model for concrete, which makes use of a modified microplane model M4 and the solidification-microprestress theory, is able to reproduce the concrete time-dependent behavior, e.g. creep, shrinkage, thermal deformation, aging, and cracking from early age up to several years. The moisture and heat fields, as well as the hydration degree, are obtained from the solution of a hygro-thermo-chemical problem which is coupled with the SMM model. This numerical framework is extended to incorporate the self-healing effects and, in particular, the effect of delayed cement hydration, which is the main cause of the self-healing for young concrete. The new update model can also simulate the effects of cracking on the permeability and the opposite restoring effect of the self-healing on the mechanical constitutive law, i.e. the microplane model. A numerical example is presented to validate the proposed computational model employing experimental data from a recent test series undertaken at Politecnico di Milano. The experimental campaign has dealt with a normal strength concrete, in which (by means of three-point-bending tests performed up to controlled crack opening and up to failure, respectively before and after exposure to different conditioning environments) the recovery of stiffness and load bearing capacity has been evaluated.  相似文献   

7.
8.
Numerical simulations of damage evolution in composites reinforced with single and multifibre are presented. Several types of unit cell models are considered: single fibre unit cell, multiple fibre unit cell with one and several damageable sections per fibres, unit cells with homogeneous and inhomogeneous interfaces, etc. Two numerical damage models, cohesive elements, and damageable layers are employed for the simulation of the damage evolution in single fibre and multifibre unit cells. The two modelling approaches were compared and lead to the very close results. Competition among the different damageable parts in composites (matrix cracks, fibre/matrix interface damage and fibre fracture) was observed in the simulations. The strength of interface begins to influence the deformation behaviour of the cell only after the fibre is broken. In this case, the higher interface layer strength leads to the higher stiffness of the damaged material. The damage in the composites begins by fibre breakage, which causes the interface damage, followed by matrix cracking.  相似文献   

9.
Failure patterns and mechanical behaviour of high-performance fibre reinforced cementitious composites depend on the distribution of fibres within a specimen. In this contribution, we propose a novel computational approach to describe failure processes in fibre reinforced concrete. A discrete treatment of fibres enables us to study the influence of various fibre distributions on the mechanical properties of the material. To ensure numerical efficiency, fibres are not explicitly discretized but they are modelled by applying discrete forces to a background mesh. The background mesh represents the matrix while the discrete forces represent the interaction between fibres and matrix. These forces are assumed to be equal to fibre pull-out forces. With this approach experimental data or micro mechanical models, including detailed information about the fibre-matrix interface, can be directly incorporated into the model.  相似文献   

10.
There is a compelling economic incentive to develop concrete materials that can repair its own damage, increase durability and prevent structural failure. This research investigated the potential of adding two different mineral producing bacteria into two types of cementitious mortar matrix to enhance self-healing ability for autonomous crack repair. In this study, zeolite was used as a carrier material to protect bacteria in high pH environment normally exists in concrete. The spore forming ability and ureolytic activity of zeolite-immobilized bacteria were investigated in order to examine potential for producing healing compounds. The self-healing ability of bacteria incorporated normal and fiber reinforced mortars was judged based on the development of compressive strength and permeation properties of cracked specimens with age as well as micro-structural characterization of crack healing compounds using scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction.  相似文献   

11.
Conclusions Flexural fatigue of uniaxially and biaxially stressed IPN/glass mat composites was investigated using four point bend (4PB) and concentrically loaded (CL) specimen geometries. Regions of nearly constant bending moment between the inner spans of a 4PB beam and within the inner annulus of a CL circular plate yield quasi-uniform uniaxial and biaxial stress, respectively, on the tensile faces. The specimen dimensions were optimized for both loading geometries to give: (1) reduced specimen deflection through maximizing the ratio of the induced tensile stresses to the applied load, (2) minimized contact stresses by maximizing the induced stress with respect to the unit contact load, and (3) a large material volume exposed to the maximum cyclic stress (i.e., statistical fracture initiation).A power model was used to analyze the fatigue data for the 4PB and CL specimens. Both IPN composite materials studied fatigued more rapidly under the more severe loading conditions imposed by the CL specimen geometry.Fractography revealed that debond fracture was the dominant damage process for both geometries. The initial debond cracks were uniformly distributed throughout the stressed regions, confirming the presence of nearly uniform tensile stress. Damage localization followed after further cycling and was characterized by a locally high debond fracture density, fiber fracture, and always occurred where several glass strands crossed near the specimen surface. Final specimen failure resulted from the preferential growth of dominant cracks through the specimen thickness.  相似文献   

12.
A study has been undertaken of fatigue in glass fibre reinforced composites. Two matrix resins were tested: a standard polyester and a polyurethane-vinyl-ester, which was designed to have a higher toughness. Three different types of glass fibre fabrics were used for reinforcement: a conventional woven roving and two stitch-bonded cloths. The glass cloths were combined into various lay-ups, in order to consider the effects of matrix, cloth and lay-up on the fatigue strength. Additionally, a study was undertaken to evaluate the micromechanisms that occurred during fatigue and how damage accumulated throughout the sample lifetime. This involved measuring stiffness changes during fatigue cycling, followed by microscopic study of the samples. It was found that similar damage micromechanisms occurred in each lay-up regardless of resin and cloth type, and these included matrix cracking, delamination and fibre breakage. However, differences were observed in the extent, location and rate of damage, and these were consistent with the variations seen in the fatigue strengths.  相似文献   

13.
The paper investigates the medium-term self-healing performance of fiber reinforced cementitious composites with intrinsic crack-width control capability under natural weathering. The pre-cracked specimens with different damage levels are exposed to various humidity conditions, namely, water submersion, natural weathering, and a laboratory environment with constant humidity. The medium-term self-healing performance is evaluated using a resonant frequency test, tensile test, SEM, and EDX. It is concluded that the medium-term cracked specimens can moderately recover their mechanical properties within 90 days after being submerged in water or exposed to natural weathering. In particular, they are able to resume the multiple cracking behavior and exhibit a reloading strength larger than the preloading strength. Furthermore, the identified compositions of the medium-term healing products for specimens exposed to water and natural weathering conditions are similarly characterized. The reported results imply that effective medium-term self-healing can be realized in fiber reinforced cementitious composites with intrinsic crack-width control capability under natural weathering.  相似文献   

14.
This study gives a detailed analysis of load distributions around fibre breaks in a composite. In contrast to other studies reported in the literature, the analysis considers different configurations of composite damage from the failure of a few to the failure of many fibres. The model considers three types of matrix behaviours (elastic, elastic–plastic and viscoelastic) with or without debonding at the broken fibre/matrix interface. In this way, the usual limitations of the finite element approach are overcome so as to take into account the number and interactions of broken fibres whilst maintaining an evaluation of the various fields (stresses in particular).  相似文献   

15.
优异性能的碳纤维增强聚合物基复合材料(CFRPs)在各领域的快速应用发展给复合材料废弃物的回收带来了挑战,尤其是碳纤维增强热固性复合材料.为有效回收碳纤维增强复合材料,促进复合材料产业的可持续发展,本文从多个角度对废弃CFRPs回收再利用研究现状进行综述,包括各回收工艺技术特点、应用领域及可降解树脂实现回收CFRPs的...  相似文献   

16.
Due to their different mechanical properties, cracking and deformability behaviour of FRP reinforced concrete (FRP RC) members is quite different from traditional steel reinforced concrete (SRC) having great incidence on their serviceability design. This paper presents and discusses the results of an experimental programme concerning concrete tension members reinforced with glass fibre reinforced polymer (GFRP) bars. The main aim of the study is to evaluate the response of GFRP reinforced concrete (GFRP RC) tension members in terms of cracking and deformations. The results show the dependence of load-deformation response and crack spacing on the reinforcement ratio. The experimental results are compared to prediction models from codes and guidelines (ACI and Eurocode 2) and the suitability of the different approaches for predicting the behaviour of tensile members is analysed and discussed.  相似文献   

17.
A micromechanics damage model is presented which examines the effect of fibre-matrix debonding and thermal residual stress on the transverse damage behaviour of a unidirectional carbon fibre reinforced epoxy composite. It is found that for a weak fibre-matrix interface, the presence of thermal residual stress can induce damage prior to mechanical loading. However, for a strong fibre-matrix interface the presence of thermal residual stress is effective in suppressing fibre-matrix debonding and improving overall transverse strength by approximately 7%. The micromechanical model is subjected to a multiple loading cycle (i.e. tension-compression-tension), where it is shown to provide novel insight into the microscopic damage accumulation that forms prior to ultimate failure, clearly highlighting the different roles that fibre-matrix debonding and matrix plasticity play in forming the macroscopic response of the composite. Such information is vital to the development of accurate continuum damage models, which often smear these effects using non-physical material parameters.  相似文献   

18.
This paper presents an investigation of the combined self-healing and toughening performance of two copolymers: thermoplastic poly(ethylene-co-methyl acrylate) (EMA) and poly(ethylene-co-methacrylic acid) (EMAA). Carbon fibre composites were manufactured from unidirectional prepregs with rectangular-shaped patches being placed between composite plies. Results from double-cantilever-beam and short-beam-shear testing show that the incorporation of mendable polymers improves interlaminar fracture toughness but causes a reduction in interlaminar shear strength. The healing efficiency in terms of restoration of the interlaminate fracture energy scales linearly with the areal percentage of self-healing material. Microstructure study revealed distinct difference in the fracture surfaces of composites with EMA and EMAA, with EMA displaying extensive nano-scale porous structures in contrast to the more homogenous single phase structure from EMAA.  相似文献   

19.
20.
Several constitutive models for fibre reinforced concrete (FRC) have been reported in the past years based on the flexural performance obtained in a bending test. The Barcelona test was presented as an alternative to characterise the tensile properties of FRC; however, no constitutive model was derived from it. In this article, a formulation to predict the tensile behaviour of FRC is developed based on the results of the Barcelona test. The constitutive model proposed is validated by simulating the results of an experimental program involving different types of fibres and fibre contents by means of finite element software. Moreover, the simplified formulation proposed is compared with constitutive models from European codes and guidelines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号