Effects of magnesia fines addition ( 4% ,6% and 8% in mass) and spinel with different compositions ( alumina-rich,magnesia-rich and stoichiometric spinel) on thermal expansion behavior of alumina magnesia castables were researched using tabular corundum, magnesia fines,spinel fines,ρ-Al2O3,Secar-71 cement and SiO2 fume as main starting materials. The results show that: ( 1) thermal expansion coefficients of specimens with 4 mass% and 6 mass% magnesia fines have the similar change tendency,increasing slightly with temperature rising; when magnesia addition is 8 mass% ,the thermal expansion coefficient increases obviously at 1 050 ℃ and reaches the peak at 1 350 ℃ ; ( 2) when MgO content is the same,the specimen with magnesia-rich spinel has the lowest thermal expansion coefficient; ( 3) for the castables specimens with the same MgO content,the specimen with magnesia has higher thermal expansion coefficient than that with presynthesized spinel,which is related with the secondary spinelization during the heating process. 相似文献
Colloidal Isopressing involves formulating a slurry with a weakly attractive particle network that can be pre-consolidated to a high relative density by pressure filtration and still retain fluid-like characteristics. The pre-consolidated slurry is injected into an elastomeric mold and isopressed. Isopressing rapidly converts the slurry into an elastic body that can be removed from the mold without shape distortion. Not only is this process rapid, but since the water saturated compact produced by this method does not shrink during drying, it can also be converted into a green body without a long drying period. It is demonstrated that micron-size surface features, such as 5 μm wide channels with a depth/width ratio of 2, can be rapidly produced on the surface of alumina powder compacts. The fracturing of thin vertical portions of a micro-patterned surface during pressure release and demolding has been an obstacle to obtaining micron-sized features with high aspect ratios. A method is shown here that enables the fabrication of such features by strengthening the saturated isopressed body. It is shown that concentration controlled gelation of a poly(vinyl alcohol)–Tyzor® Triethanolamine Tritanate (TE) additive effectively increases the strength of the elastic, isopressed body, saturated with water, while maintaining the low viscosity of the pre-consolidated slurry, which is required for transferring the pre-consolidated slurry into a rubber mold prior to isopressing. 相似文献
Great efforts have been made to separate micro/nanoparticles in small-volume specimens, but it is a challenge to achieve the simple, maneuverable and low-cost separation of sub-microliter suspension with large separation distances. By simply adding trace amounts of cations (Mg2+/Ca2+/Na+), we experimentally achieved the size-dependent spontaneous separation of colloidal particles in an evaporating droplet with a volume down to 0.2 μL. The separation distance was at a millimeter level, benefiting the subsequent processing of the specimen. Within only three separating cycles, the mass ratio between particles with diameters of 1.0 μm and 0.1 μm can be effectively increased to 13 times of its initial value. A theoretical analysis indicates that this spontaneous separation is attributed to the size-dependent adsorption between the colloidal particles and the aromatic substrate due to the strong hydrated cation-π interactions. 相似文献
This work presents the synthesis of micro‐sized polystyrene magnetic beads by in situ incorporation of oleic acid‐modified Fe3O4 magnetic nanoparticles via a suspension polymerization process. Fe3O4 nanoparticles with superparamagnetic characteristics were obtained through a coprecipitation technique. These particles present an average diameter equal to 7.4 ± 4.6 nm, as determined by AFM. This result is in agreement with the crystallite size of single domains calculated by using Scherrer's equation, which was equal to 7.7 nm, based on XRD measurements. The obtained materials were also studied using TGA. The weight loss behavior was independent of the Fe3O4 content and the stability to the thermal degradation was also not improved by magnetic nanoparticles present in the composite. Polystyrene/Fe3O4 magnetic nanocomposites exhibited the same diffraction peaks observed in the pure Fe3O4, which indicates that nanoparticles inside the composites preserved the structure and properties of pure Fe3O4. It was also shown that nanosized polystyrene particles, dispersed in the aqueous phase, are obtained due to the stabilization effect of the oleic acid on the styrene droplets. A cross‐section of polystyrene magnetic particles showed empty spherical regions, attributed to the encapsulation of water microdroplets during the polymerization reaction. The obtained polymeric materials also presented good magnetic behavior, indicating that the modified Fe3O4 nanoparticles were successfully dispersed in the polystyrene particles.
Direct coagulation casting of alumina suspension via controlled release of high valence counter ions (DCC–HVCI) using calcium citrate as coagulating agent was reported. Hydrolysis of glycerol diacetate shifts the pH of suspension to weakly acidic region which helps to decompose calcium citrate and release calcium ions. The effect of concentration of glycerol diacetate and calcium citrate on the pH and viscosity of alumina suspension was investigated at 25°C and 60°C, respectively. The pH of suspensions with glycerol diacetate and calcium citrate decreases to 8.6 and 7.5 treated at 25°C and 60°C, respectively. It is indicated that high viscosity is achieved by adding 2 vol% glycerol diacetate and 0.5 wt% calcium citrate which is enough to coagulate the suspension. Green body with compressive strength of 1.0 MPa is obtained by treating the alumina suspension with 2 vol% glycerol diacetate and 0.5 wt% calcium citrate at 60°C for 1 h. The alumina ceramics sintered at 1550°C have homogeneous microstructure with relative density above 99.0%. 相似文献
Control of the rheological properties of the nanoparticle suspensions is challenging. In this study influence of the solids content and the fructose addition on the viscosity of nano alumina suspensions have been investigated by low temperature differential scanning calorimetry (LT‐DSC), rheometry, and zeta potential measurements. Analysis of the water melting events in LT‐DSC revealed useful information for explaining the rheological behavior of the nanoparticle suspensions. It was shown that the bound water layer has a negligible effect on the viscosity of micrometer‐size particle suspension while it increases the effective solid content of alumina nanoparticle suspensions significantly leading to high viscosities. The presence of fructose modifies the bound water layer, decreases the effective solids content, hence resulting in viscosity reduction. Fructose addition lowers the pH of the suspension, but has a negligible effect on the zeta potential. The origin of the bound water, and electrostatic and steric effects of the fructose addition on the viscosity are discussed. 相似文献
To obtain dense, fine-grained ceramics, fine particles and advanced powder processing, such as colloidal processing, are needed. Al2O3 and ZrO2 particles are dispersed in colloidal suspensions by electrosteric repulsion because of polyelectrolyte absorbed on their surfaces. However, additional redispersion treatment such as ultrasonication is required to obtain dispersed suspensions because fine particles tend to agglomerate. The results demonstrate that ultrasonication is effective in improving particle dispersion in suspensions and producing a homogeneous fine microstructure of sintered materials. Superplastic tensile ductility is improved by ultrasonication in preparing suspensions because of the dense and homogeneous fine microstructure. 相似文献
The first in situ characterization of the pore morphology evolution during the cold sintering process (CSP) is presented using small-angle X-ray scattering methods. For practical reasons, measurements have been made on a model system, KH2PO4 (KDP). The scattering signal revealed a striking behavior that could be modeled with nanoscale structural features associated with the dissolution and reprecipitation of KDP close to the grain/pore interface during CSP. The prospects for future more quantitative experiments under a range of temperature and pressure conditions, as well as for studies of more technologically important materials such as ZnO are considered. 相似文献
We report a novel technique for preparing cross-linked protein membranes within microchannels by using an interfacial cross-linking reaction. Glass microchannels with a Y input were assembled by using a simple adhesive bonding technique to achieve dual, parallel laminar flows. Membrane formation utilised an interfacial reaction at the liquid-liquid interface, which involved bovine serum albumin (aqueous solution with a flow rate of 300 microL min(-1)) and terephthaloyl chloride (xylene solution with a flow rate of 700 microL min(-1)), to form thin ( approximately 25 microm) cross-linked films along the length of the channel under the continuous pressure-driven laminar flow. Such microfabricated membranes could extend the separation potential of any microfluidic structure to provide a stable barrier layer. Furthermore, degradation of the membrane was possible by using an alkali sodium dodecyl sulfate solution, which led to the complete disappearance of the membrane. These membranes could facilitate additional modification to allow for different permeability properties by controlled degradation. The one-step in situ membrane-fabrication methodology reported here generated precisely localised membranes and avoided the complexities of subcomponent assembly, which require complicated alignment of small, preformed membranes. This methodology could become the basis for sophisticated microseparation systems, biosensors and several "lab-on-a-chip" devices. 相似文献
The Fourier transform infrared (FTIR) in situ method was developed for the investigation of photopolymerization. Ultraviolet (UV) cure of a mixture of a cycloaliphatic epoxide, a 2-ethylhexyl acrylate, and photoinitiators, which forms simultaneous interpenetrating polymer network (IPN), was monitored while the sample was irradiated with UV light. Triphenylsulfonium salt and benzoin ether were used as photoinitiators. For the sake of comparison, similar experiments were performed for the epoxide with the triphenylsulfonium salt photoinitiator and the acrylate with the benzoin ether photoinitiator. The epoxy photopolymerization was monitored using an epoxy CH stretching band at 3005 cm?1 and a ring vibration band at 790 cm?1. The acrylic photopolymerization was monitored using a C?C stretching band at 1637 cm?1. The epoxy conversion was less than 60% when the acrylic polymerization was completed in the IPN. 相似文献
The scavenging of a resistive siliceous phase via the addition of Al2O3 was studied, using imaging secondary-ion mass spectroscopy (SIMS), given the improved grain-boundary conductivity in 8-mol%-yttria-stabilized zirconia (8YSZ). The grain-boundary resistivity in 8YSZ decreased noticeably with the addition of 1 mol% of Al2O3. Strong SiO2 segregation at the grain boundaries was observed in a SIMS map of pure 8YSZ that contained 120 ppm of SiO2 (by weight). The addition of 1 mol% of Al2O3 caused the SiO2 to gather around the Al2O3 particles. The present observations provided direct and visual evidence of SiO2 segregation at the grain boundaries (which had a deleterious effect on grain-boundary conductivity) and the scavenging of SiO2 via Al2O3 addition. 相似文献
Different precursor-mixtures of orange Cr,Sb-TiO2 ceramic pigment have been obtained by non-conventional methods (heterogeneous ammonia coprecipitation, urea homogeneous coprecipitation, PECHINI polyester method and an original aqueous–organic coprecipitation method in water–diethylenglycol medium) in order to produce in situ the pigment through the ceramic body firing. The pigmenting performances of powders were appraised in two cases: (a) as ceramic pigment for glazed porcelain stoneware and (b) as ceramic inks for screen printing of porcelain stoneware. Samples were characterised by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), UV–vis-NIR spectroscopy by diffuse reflectance method, CIE-L*a*b* colour parameters, BET specific surface area and crystallite size measured by the Scherrer method. The colouring performance of raw powders obtained by non-conventional methods in glazed porcelain stoneware improves that of the ceramic samples fired at 1100 °C used as reference. TEM observations indicate nanostructured powders with pigmenting performance depending on factors such as their specific surface area (BET), the crystalline phases detected by XRD (e.g. anatase–rutile presence) and their crystallite size (Scherrer measurements). Ammonia coprecipitated samples, both in water and in water–diethylenglycol medium without surfactant addition, or modified by the addition of sodium dodecyl sulphate as surfactant, stand out by their colouring performance. 相似文献
TiC-reinforced austenitic steel composites have been prepared by self-propagating high temperature synthesis (SHS). The in
situ reinforcement of a Fe-Mn-based austenitic steel matrix with TiC was achieved upon aluminothermic reduction of iron oxide
(Fe2O3), manganese dioxide (MnO2) and titanium dioxide (TiO2) powders in the presence of carbon (C). This highly exothermic thermite reaction was found to produce in situ the Fe-Mn-TiC
austenitic steel composites. The reaction kinetics, recovery of Mn and TiC, yield of metal, and composite microstructure were
found to strongly depend on the process parameters, such as green composition, blending sequence, and average particle size
of Al powder used as a reducing agent.
The text was submitted by the authors in English. 相似文献
The R -curve behavior of an Al2O3 ceramic with 25 vol% of molybdenum-metal particles added was studied by using fracture-mechanics experiments and in situ piezospectroscopic measurements of microscopic bridging tractions. Cracks were propagated by using a crack stabilizer, which allowed stable crack growth in a bending geometry. Microscopic bridging stresses were measured in situ during fracture propagation by detecting the shift of the Cr3+ fluorescence lines of Al2O3. Laser spots ∼1 µm in diameter and ∼10 µm deep were focused at the ceramic/metal interface of the bridging sites, and the closure stresses that acted on the crack faces were recorded as a function of external load. The maximum stress that was experienced by the stretched metal particles prior to final failure was ∼0.4 GPa. The maximum stress magnitude was not markedly different in relatively small (i.e., <5 µm) metal particles, failing with large ductility, as compared with larger particles which, instead, fractured in semibrittle fashion. A map of bridging tractions along the crack wake was constructed under a constant stress intensity factor, almost equal to that which is critical for crack propagation. Using this map to theoretically predict the rising R -curve behavior of the composite led to results that were consistent with the fracture-mechanics experiments, thus enabling us to explain the observed toughening, primarily in terms of a crack-bridging mechanism. 相似文献
In situ nanostructured (TiCr)CN composite coating was prepared by reactive plasma spraying Ti-Cr-graphite powder under air atmosphere. The phase composition, microstructure, mechanical properties and wear performance were investigated. The results show that the coating consists of a mixture of TiN, Ti(CN), (TiCr)N, Cr, Ti3O, and amorphous graphite and CrN phases. The grain size is about 70 nm and the grains present equiaxed and columnar crystal morphologies. Moreover, 5 nm-sized nanocrystals are embedded in an amorphous phase. The (TiCr)CN composite coating possesses high hardness (1325 ± 120 HV) and toughness (4.35 ± 0.53 MPa m1/2). The friction coefficient and wear rate of the coating are 0.46 and 3.01 ± 0.17 × 10?6 mm3 N?1 m?1, respectively. The inclusion of metallic phase Cr could improve the toughness and wear resistance of the (TiCr)CN coating. 相似文献
We report a dynamic light scattering study of semi-dilute solutions of polydisperse branched polymers. The autocorrelation function of the intensity of scattered light exhibits two decay modes. Experiments performed in situ on the sol phase of a system undergoing irreversible gelation show that the slow relaxation time diverges at the sol-gel transition. 相似文献