首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of mammalian homologues of Drosophila TRP proteins, which induce light-activated Ca2+ conductance in photoreceptors, has been an important clue to understand molecular mechanisms underlying receptor-activated Ca2+ influx in vertebrate cells. We have here isolated cDNA that encodes a novel TRP homologue, TRP5, predominantly expressed in the brain. Recombinant expression of the TRP5 cDNA in human embryonic kidney cells dramatically potentiated extracellular Ca2+-dependent rises of intracellular Ca2+ concentration ([Ca2+]i) evoked by ATP. These [Ca2+]i transients were inhibited by SK&F96365, a blocker of receptor-activated Ca2+ entry, and by La3+. Expression of the TRP5 cDNA, however, did not significantly affect [Ca2+]i transients induced by thapsigargin, an inhibitor of endoplasmic reticulum Ca2+-ATPases. ATP stimulation of TRP5-transfected cells pretreated with thapsigargin to deplete internal Ca2+ stores caused intact extracellular Ca2+-dependent [Ca2+]i transients, whereas ATP suppressed [Ca2+]i in thapsigargin-pretreated control cells. Furthermore, in ATP-stimulated, TRP5-expressing cells, there was no significant correlation between Ca2+ release from the internal Ca2+ store and influx of extracellular Ca2+. Whole-cell mode of patch-clamp recording from TRP5-expressing cells demonstrated that ATP application induced a large inward current in the presence of extracellular Ca2+. Omission of Ca2+ from intrapipette solution abolished the current in TRP5-expressing cells, whereas 10 nM intrapipette Ca2+ was sufficient to support TRP5 activity triggered by ATP receptor stimulation. Permeability ratios estimated from the zero-current potentials of this current were PCa:PNa:PCs = 14.3:1. 5:1. Our findings suggest that TRP5 directs the formation of a Ca2+-selective ion channel activated by receptor stimulation through a pathway that involves Ca2+ but not depletion of Ca2+ store in mammalian cells.  相似文献   

2.
The existence of ryanodine-sensitive Ca2+ stores and their role in the Ca2+ entry mechanism were examined in the rat submandibular gland acinar cells, using the microfluorimetry of intracellular Ca2+ concentration ([Ca2+]i). In the presence of thapsigargin, a Ca(2+)-ATPase inhibitor of inositol (1, 4, 5) triphosphate (InsP3)-sensitive Ca2+ stores, caffeine caused an increase in [Ca2+]i, which was inhibited by treatment with ryanodine (a ligand to the Ca(2+)-induced Ca2+ release channels). In the cells treated with ryanodine, 1 mM Ca2+ addition to a Ca(2+)-free solution caused a marked increase in [Ca2+]i, which was eliminated by application of Ni2+ or SK & F 96365, suggesting a Ca2+ entry triggered by ryanodine. The maximal change in the net increase in [Ca2+]i caused by the ryanodine-coupled Ca2+ entry, was 104.0 +/- 16.0 nM, which intense was caused by 10 microM ryanodine. Emptying the InsP3-sensitive stores by treatment with thapsigargin also caused Ca2+ entry, which maximally changed [Ca2+]i by 349.6 +/- 15.1 nM. Ten mumol/liter ryanodine was confirmed to cause a release of 45Ca2+ from the parotidic microsomal fraction enriched in endopalsmic reticulum. We propose that ryanodine-sensitive Ca2+ stores are present in rat submandibular gland acinar cells. We further propose that release of Ca2+ from the ryanodine-sensitive stores, which means eventually depletion of the ryanodine-sensitive Ca2+ stores, can activate the Ca2+ entry. The ability for Ca2+ entry coupled with the ryanodine-sensitive Ca2+ stores seems to be about 30% of the ability for Ca2+ entry coupled with the thapsigargin-sensitive Ca2+ stores.  相似文献   

3.
The precise mechanisms by which nitric oxide (NO) decreases free [Ca2+]i, inhibits Ca2+ influx, and relaxes vascular smooth muscle are poorly understood. In rabbit and mouse aorta, agonist-induced contractions and increases in [Ca2+]i were resistant to nifedipine, suggesting Ca2+ entry through non-L-type Ca2+ channels. Relaxations to NO were inhibited by thapsigargin (TG) or cyclopiazonic acid (CPA) indicating the involvement of sarcoplasmic reticulum ATPase (SERCA). Studies of the effect of NO on [Ca2+]i and the rate of Mn2+ influx with fura-2 fluorometry in rabbit aortic smooth muscle cells in primary culture were designed to test how SERCA is involved in mediating the response to NO. When cells were stimulated with angiotensin II (AII), NO accelerated the removal of Ca2+ from the cytoplasm, decreased [Ca2+]i, and inhibited Ca2+ and Mn2+ influx. Inhibition of SERCA abolished all the effects of NO. In contrast, inhibition of the Na+/Ca2+exchanger or the plasma membrane Ca2+ ATPase had no influence on the ability of NO to decrease [Ca2+]i. NO maximally decreased [Ca2+]i within 5 s, whereas significant inhibition of AII-induced Ca2+ and Mn2+ influx required more than 15 s. The inhibition of cation influx strictly depended on [Ca2+]o and functional SERCA, suggesting that during the delay before NO inhibits Ca2+ influx, the influx of Ca2+ and the uptake into intracellular stores are required. In the absence of [Ca2+]o, NO diminished the AII-induced [Ca2+]i transient by a SERCA-dependent mechanism and increased the amount of Ca2+ in the stores subsequently released by ionomycin. The present study indicates that the initial rapid decrease in [Ca2+]i caused by NO in vascular smooth muscle is accounted for by the uptake of Ca2+ by SERCA into intracellular stores. It is proposed that the refilling of the stores inhibits store-operated Ca2+ influx through non-L-type Ca2+ conducting ion channels and that this maintains the decrease in [Ca2+]i and NO-induced relaxation.  相似文献   

4.
PURPOSE: To characterize Ca2+ mobilization by P2 receptors in the bovine corneal endothelial cells (BCEC). METHODS: Changes in intracellular Ca2+ ([Ca2+]i) were measured by fluorescence imaging of cultured and fresh BCEC cells loaded with the Ca2+-sensitive dye Fura-PE3. Relative rates of Ca2+ influx were measured employing Mn2+ as a surrogate for Ca2+. RESULTS: Exposure of cultured cells to uridine 5'-triphosphate (UTP), 2-methyl-thio ATP (msATP) and ATP caused biphasic changes in [Ca2+]i consisting of a peak followed by a plateau phase. Based on the peak responses to 100 microM agonist, the magnitude of UTP responses were similar to that of ATP but greater than that of msATP or ADP. UTP and msATP stimulated Mn2+ influx following [Ca2+]i peak similar to that observed in response to cyclopiazonic acid (CPA), an inhibitor of ER Ca2+-ATPase. Under Ca2+-free conditions, peak responses were similar to those in the presence of external Ca2+, but reduced when the cells were pre-exposed to CPA. Reactive Blue-2 (RB2), inhibited msATP responses by 60.4 +/- 18.8% but UTP responses by only 10.6 +/- 9.5%. Repeated exposures to UTP or msATP reduced [Ca2+]i mobilization indicating homologous desensitization. Response to UTP was not affected by a prior exposure to msATP. However, response to msATP was reduced by a prior exposure to UTP indicating mixed heterologous desensitization. Fresh cells responded to UTP (50 microM) with temporal characteristics of [Ca2+]i mobilization similar to that of cultured cells. CONCLUSION: BCEC express P2 receptors belonging to the P2Y subfamily. The emptying of the IP3-sensitive stores, leading to the initial peak in [Ca2+]i response, subsequently caused capacitative Ca2+ influx leading to the onset of the plateau phase. A significant homologous desensitization to UTP and msATP, selective heterologous desensitization between UTP and msATP, and selective inhibition by RB2 indicate the coexistence of multiple P2Y receptors.  相似文献   

5.
In Fura-2-loaded, freshly isolated rabbit aortic endothelial cells the Ca2+ entry pathway was investigated using the Mn2(+)-quenching technique. Acetylcholine (ACh) interaction with muscarinic receptors activated Mn2+ influx through the plasma membrane. Sarcoplasmic-endoplasmic reticulum Ca2+ ATPase blockers such as cyclopiazonic acid (CPA), thapsigargin and BHQ, which block the endoplasmic reticulum Ca2+ pump and do not interact with receptors, also activated Mn2+ influx. Mn2+ influx activated by either ACh or CPA was blocked by the following agents: SKF96365, a receptor-operated Ca2+ channel (ROC) blocker; NCDC, a PLC and ROC blocker, and genistein, a tyrosine kinase inhibitor. D600, the L-type Ca2+ channel blocker, had no significant effect on Mn2+ influx. Caffeine blocked the ACh-induced Ca2+ release but had no effect on the ACh-induced Mn2+ influx. Similarly dantrolene, which blocked intracellular Ca2+ release induced by ACh, did not affect the ACh-activated Mn2+ influx. These data suggest that ACh can activate Ca2+ influx without depletion of the ACh-sensitive intracellular Ca2+ store. It is concluded (1) that in freshly isolated endothelial cells depletion of the intracellular Ca2+ store is not necessary for ACh-activated Ca2+ influx, and (2) that receptor activation and intracellular Ca2+ store depletion may activate the same Ca2+ entry pathway through parallel mechanisms.  相似文献   

6.
The cytoplasmic free calcium concentration ([Ca2+]i) was measured in cultured microglial cells with the Ca2+-sensitive fluorescent dye Fura-2 using a digital imaging system. Stimulation of P2 purinergic receptors by ATP or UTP always evoked a [Ca2+]i elevation. The ATP-induced Ca2+ response involved both Ca2+ influx through ionotropic receptors and Ca2+ release from intracellular pools, whereas UTP selectively stimulated intracellular Ca2+ release. When intracellular Ca2+ release was stimulated in the absence of extracellular Ca2+, the readmission of extracellular Ca2+ caused a large rebound [Ca2+]i increase. Following this rebound, [Ca2+]i did not return to the initial resting level, but remained for long periods of time (up to 20 min), at a new, higher steady-state level. Both the amplitude of the rebound Ca2+ transient and the new plateau level strongly correlated with the degree of intracellular Ca2+ depletion, indicating the activation of a store-operated Ca2+ entry pathway. The elevated steady-state [Ca2+]i level was associated with a significant increase in the plasma membrane permeability to Ca2+, as changes in extracellular Ca2+ were reflected in almost immediate changes of [Ca2+]i. Similarly, blocking plasma-lemmal Ca2+ channels with the non-specific agonist La3+ (50 microM) caused a decrease in [Ca2+]i, despite the continuous presence of Ca2+ ions in the extracellular medium. After the establishment of the new, elevated steady-state [Ca2+]i level, stimulation of P2U metabotropic purinoreceptors did not induce a [Ca2+]i response. In addition, application of either thapsigargin (1 microM) or carbonyl cyanide chlorophenyl hydrazone (10 microM) failed to affect [Ca2+]i. We conclude that the maximal depletion of intracellular Ca2+ stores in mouse brain microglia determines the long-term activation of a plasma membrane Ca2+ entry pathway. This activation appears to be associated with a significant decrease in the capability of the intracellular Ca2+ stores to take up cytosolic Ca2+ once they have been maximally depleted.  相似文献   

7.
Trichosporin (TS) -B-VIa, a fungal alpha-aminoisobutyric acid (Aib) -containing peptide consisting of 19 amino acid residues and a phenylalaninol, produced both 45Ca2+ influx into bovine adrenal chromaffin cells and catecholamine secretion from the cells. The secretion induced by TS-B-VIa at lower concentrations (2-5 microM) was completely dependent on the external Ca2+, while that induced by TS-B-VIa at higher concentrations (10-30 microM) was partly independent of the Ca2+. The concentration-response curves (2-5 microM) for the TS-B-VIa-induced Ca2+ influx and secretion correlated well. The TS-B-VIa (at 5 microM) -induced secretion was not antagonized by diltiazem, a blocker of L-type voltage-sensitive Ca2+ channels. The treatment of fura-2-loaded C6 glioma cells with TS-B-VIa (2-5 microM) led to an increase in the intracellular free Ca2+ concentration ([Ca2+]i) in a concentration-dependent manner but the stimulatory effects of TS-B-VIa on [Ca2+]i were only slightly observed in Ca(2+)-free medium, indicating that TS-B-VIa causes Ca2+ influx from the external medium into the C6 cells. The TS-B-VIa-induced increase in [Ca2+]i in the C6 cells was not antagonized by diltiazem and by SK&F 96365, a novel blocker of receptor-mediated Ca2+ entry. High K+ increased neither [Ca2+]1 in the C6 cells nor Mn2+ influx into the cells, while TS-B-VIa increased Mn2+ influx. Also in other non-excitable cells, bovine platelets, similar results were obtained. These results strongly suggest that the mechanism of Ca2+ influx by TS-B-VIa at the lower concentrations is distinct from the event of Ca2+ influx through receptor-operated or L-type voltage-sensitive Ca2+ channels in both excitable cells (the chrornaffin cells) and non-excitable cells (the C6 cells and the platelets) and that TS-B-VIa per se may form Ca(2+)-permeable ion channels in biological membranes. On the other hand, the peptide at the higher concentrations seems to damage cell membranes.  相似文献   

8.
The present study elucidated the precise mechanism of 5-hydroxytryptamine (5-HT)-induced increase of intracellular Ca2+ concentration ([Ca2+]i) in cultured vascular smooth muscle cells isolated from rat aortic media. [Ca2+]i was measured using fluorescent Ca2+ indicator, fura-2. 5-HT caused a dose-dependent increase in [Ca2+]i, which was completely inhibited by ketanserin. alpha-Methyl-5-HT had an equipotent effect to 5-HT. Diltiazem at 10 microM partially suppressed the 5-HT-induced increase in [Ca2+]i. 5-HT also augmented Mn2+ influx, when monitored by Mn2+ quenching of fura-2 fluorescence. When extracellular Ca2+ (1.3 mM) was removed, a decrease in resting level and a small, transient increase in [Ca2+]i were observed. 5-HT stimulation also induced an increase in the production of inositol triphosphate. 5-HT-induced increase in [Ca2+]i was significantly, but partially inhibited by staurosporin and H-7. Phorbol 12-myristate 13-acetate induced an increase in [Ca2+]i, which was abolished by removal of extracellular Ca2+. 5-HT-induced increase in [Ca2+]i was not affected by the pretreatment with pertussis toxin (PTX), and was not accompanied by a change in cyclic AMP content. These results suggest that, in cultured rat aortic smooth muscle cells, 5-HT increases [Ca2+]i via 5-HT2 receptor subtype by inducing influx of extracellular Ca2+ partially through L-type voltage-dependent Ca2+ channel, as well as by mobilizing Ca2+ from its intracellular stores. Activation of protein kinase C may be positively involved in the regulatory mechanism of Ca2+ influx, but PTX-sensitive G protein and cyclic AMP seem to be not involved.  相似文献   

9.
The initial release of Ca2+ from the intracellular Ca2+ stores is followed by a second phase during which the agonist-dependent Ca2+ response becomes sensitive to the extracellular Ca2+, indicating the involvement of the plasma membrane (PM) Ca2+ transport systems. The time course of activation of these transport systems, which consist of both Ca2+ extrusion and Ca2+ entry pathways, is not well established. To investigate the participation of these processes during the agonist-evoked Ca2+ response, isolated pancreatic acinar cells were exposed to maximal concentrations of an inositol 1,4,5-trisphosphate-mobilizing agonist (acetylcholine, 10 microM) in different experimental conditions. Following the increase of [Ca2+]i, there was an almost immediate activation of the PM Ca2+ extrusion system, and maximal activity was reached within less than 2s. The rate of Ca2+ extrusion was dependent on the level of [Ca2+]i, with a steep activation at values just above the resting [Ca2+]i and reached a plateau value at 700 nM Ca2+. In contrast, the PM Ca2+ entry pathway was activated with a much slower time course. There was also a delay of 3-4 s between the maximal effective depletion of the intracellular Ca2+ stores and the activation of this entry pathway. By use of digital imaging data, the PM Ca2+ transport systems were also analyzed independently in two regions of the cells, the lumenal and the basal poles. With respect to the activation of the Ca2+ entry pathways, no significant difference existed between these two regions. In contrast, the PM Ca2+ pump displayed a different pattern of activity in these regions. In the basal pole, the pump activity was more sensitive to changes of [Ca2+]i and had a higher maximal activity. Also, in the lumenal pole, the pump became saturated at values of [Ca2+]i around 700 nM, whereas at the basal pole [Ca2+]i had a biphasic effect on the pump activity, and higher [Ca2+]i inhibited the pump. It is argued that these differences in sensitivity to the levels of [Ca2+]i and the different relationship between [Ca2+]i and the rate of extrusion at the two functional poles of the pancreatic acinar cells indicate that the plasma membrane Ca2+ ATPase might play an important role in the polarization of the Ca2+ response.  相似文献   

10.
1. In A7r5 cells loaded with the Ca2+ indicator fura-2, we examined the effect of a Ca2+ channel blocker SK&F 96365 on increases in intracellular free Ca2+ concentrations ([Ca2+]i) and Mn2+ quenching of fura-2 fluorescence by endothelin-1 (ET-1). Whole-cell patch-clamp was also performed. 2. Higher concentrations (> or = 10 nM) of ET-1 (higher [ET-1]) evoked a transient peak and a subsequent sustained elevation in [Ca2+]i: removal of extracellular Ca2+ abolished only the latter. A blocker of L-type voltage-operated Ca2+ channel (VOC) nifedipine at 1 microM reduced the sustained phase to about 50%, which was partially sensitive to SK&F 96365 (30 microM). 3. Lower [ET-1] (< or = 1 nM) evoked only a sustained elevation in [Ca2+]i which depends on extracellular Ca2+. The elevation was partly sensitive to nifedipine but not SK&F 96365. 4. In the presence of 1 microM nifedipine, higher [ET-1] increased the rate of Mn2+ quenching but lower [ET-1] had little effect. 5. In whole-cell recordings, both lower and higher [ET-1] induced inward currents at a holding potential of -60 mV with linear I-V relationships and reversal potentials close to 0 mV. The current at lower [ET-1] was resistant to SK&F 96365 but was abolished by replacement of Ca2+ in the bath solution with Mn2+. The current at higher [ET-1] was abolished by the replacement plus SK&F 96365. 6. In a bath solution containing only Ca2+ as a movable cation, ET-1 evoked currents: the current at lower [ET-1] was sensitive to Mn2+, whereas that at higher [ET-1] was partly sensitive to SK&F 96365. 7. These results indicate that in addition to VOC, ET-1 activates two types of Ca2+-permeable nonselective cation channel depending on its concentrations which differ in terms of sensitivity to SK&F 96365 and permeability to Mn2+.  相似文献   

11.
In pancreatic acinar cells, as in many other cell types, the tumour promoter thapsigargin (TG) evokes a significant increase of intracellular free Ca2+ ([Ca2+]i). The increases of [Ca2+]i evoked by TG was associated with significant changes of plasma membrane Ca2+ permeability, with [Ca2+]i values following changes in extracellular [Ca2+]. Plasma membrane Ca2+ extrusion is activated rapidly as a consequence of the rise in [Ca2+]i evoked by TG and the rate of extrusion is linearly dependent on [Ca2+]i up to 1 microM Ca2+. In contrast, the activation of the Ca2+ entry pathway is delayed and the apparent rate of Ca2+ entry is independent of [Ca2+]i. In the presence of 20 mM caffeine, which reduces the resting levels of inositol trisphosphate (InsP3), the increase of [Ca2+]i evoked by TG was significantly reduced. The reduction was manifest both as a decrease of the amplitude of the [Ca2+]i peak (30% reduction) and, more importantly, as a reduction of the apparent maximal rate of [Ca2+]i increase (from 12.3 +/- 1.0 to 6.1 +/- 0.6 nM Ca2+/s). The inhibition evoked by caffeine was reversible and the removal of caffeine in the continuous presence of TG evoked a further increase of [Ca2+]i. The amplitude of the [Ca2+]i increase upon caffeine removal was reduced as a function of the time of TG exposure. Addition of TG in the presence of 1 mM La3+, which is known to inhibit the plasma membrane Ca(2+)-activated adenosine triphosphatase, induced a much higher peak of [Ca2+]i. This increase was associated with an augmentation of the apparent rate of [Ca2+]i increase (from 12.3 +/- 1.2 to 16.1 +/- 1.9 nM Ca2+/s).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Pituitary adenylate cyclase-activating polypeptide (PACAP) has been reported to increase intracellular Ca2+ concentrations ([Ca2+]i) and catecholamine release in adrenal chromaffin cells. We measured [Ca2+]i with fura-2 and recorded ion currents and membrane potentials with the whole cell configuration of the patch-clamp technique to elucidate the mechanism of PACAP-induced [Ca2+]i increase in bovine adrenal chromaffin cells. PACAP caused [Ca2+]i to increase due to Ca2+ release and Ca2+ influx, and this was accompanied by membrane depolarization and inward currents. The Ca2+ release was suppressed by ryanodine, an inhibitor of caffeine-sensitive Ca2+ stores, but was unaffected by cinnarizine, an inhibitor of inositol trisphosphate-induced Ca2+ release. Ca2+ influx and inward currents were both inhibited by replacement of extracellular Na+, and Ca2+ influx was inhibited by nicardipine, an L-type Ca2+ channel blocker, or by staurosporine, a protein kinase C (PKC) inhibitor, but was unaffected by a combination of omega- conotoxin-GVIA, omega-agatoxin-IVA, and omega-conotoxin- MVIIC, blockers of N-, P-, and Q-type Ca2+ channels. Moreover, 1-oleoyl-2-acetyl-sn-glycerol, a PKC activator, induced inward currents and Ca2+ influx. These results indicate that PACAP causes both Ca2+ release, mainly from caffeine-sensitive Ca2+ stores, and Ca2+ influx via L-type Ca2+ channels activated by membrane depolarization that depends on PKC-mediated Na+ influx.  相似文献   

13.
The fluorescent indicator Fura-2 was used to characterize the store-operated Ca2+ entry in insulin-releasing pancreatic beta-cells. To avoid interference with voltage-dependent Ca2+ entry, the cells were hyperpolarized with 400 microM diazoxide and the channel blocker methoxyverapamil was also present in some experiments. The cytoplasmic Ca2+ concentration ([Ca2+]j) of hyperpolarized mouse beta-cells was strikingly resistant to changes in external Ca2+. In cells exposed to 20 mM glucose, stimulation with 100 microM carbachol induced an initial [Ca2+]j peak followed by a sustained increase due to store-operated influx of the cation. Store-operated influx was also induced by the intracellular Ca(2+)-ATPase inhibitor thapsigargin. In the presence of store-operated influx, [Ca2+]j became markedly sensitive to variations in external Ca2+, but this sensitivity was blocked by La3+. In beta-cells exposed to both Ca2+ and Mn2+ there was slow Mn2+ quenching of the Fura-2 fluorescence, which was accelerated upon stimulation of store-operated influx. This acceleration was reversed by glucose-stimulated filling of the internal Ca2+ stores. The store-operated Ca2+ entry increased markedly during culture of the beta-cells. Activation of protein kinase C by the phorbol ester 12-O-tetradecanoylphorbol-13 acetate, inhibition of serine/threonine phosphatase by okadaic acid and inhibition of tyrosine kinase by genistein had little effect on the store-operated influx of Ca2+. In beta-cells equilibrated in 5 mM Sr2+, carbachol exposure resulted in a pronounced cytoplasmic Sr2+ ([Sr2+]j) peak due to intracellular mobilization, but little or no sustained elevation. Moreover, after activating the store-operated pathway by exposure to thapsigargin, variations in extracellular Sr2+ between 0-2 mM had only marginal effects on [Sr2+]j. Although the store-operated influx apparently accounts for a minor fraction of the Ca2+ entry, its depolarizing influence may under certain conditions be up-regulated with resulting distortion of the beta-cell function.  相似文献   

14.
The effects of lowering extracellular Na+ concentration [Na+]o, on cytosolic Ca2+ concentration, [Ca2+]c were examined by a microfluorimetric method using fura-2 in perifused preparations of isolated rat pancreatic islets. The total replacement of extracellular Na+ (Na+o) by equimolar N-methyl-D-(--)-glucamine caused a rapid rise in [Ca2+]c, and partial replacement of Na+o resulted in correlative rises in [Ca2+]c in accordance with the magnitude of reduced [Na+]o. The rise in [Ca2+]c induced by Na+o removal was strongly inhibited in the Ca2+o-deficient environment or by Ni2+. The [Ca2+]c rise, however, remained almost unchanged in the presence of nifedipine or SK&F 96365, and was enhanced by the addition of ouabain. The electrochemical gradients for Ca2+ (delta mu Ca2+) and Na+ (delta mu Na+) were calculated to be 39.08 and 12.8 kJ/mol, respectively, in this study, indicating a stoichiometry of 3Na+: 1 Ca2+. These results indicate that, in rat pancreatic islets, the rise in [Ca2+]c induced by lowering [Na+]o is mainly due to Ca2+ entry medicated by the Na+/Ca2+ exchanger operating with the stoichiometry of 3Na+:1 Ca2+, and that the Na+/Ca2+ exchanger plays an important role in maintaining stable-state [Ca2+]c.  相似文献   

15.
Emptying the intracellular calcium stores of fura-2-loaded human neutrophils by treatment with the endomembrane ATPase inhibitor thapsigargin leads to a maintained increase of [Ca2+]i by Ca2+ entry through a store-operated Ca2+ entry pathway. Under these conditions, [Ca2+]i was reduced transiently by N-formyl-methionyl-leucyl-phenylalanine (fMLP) and permanently by phorbol 12,13-dibutyrate (PDB). Platelet-activating factor (PAF) had no effect. The fMLP- and PDB-induced [Ca2+]i decreases were not due to stimulated Ca2+ efflux but to inhibition of store-operated Ca2+ entry pathway. PDB and fMLP, but not PAF, inhibited the entry of Ca2+, Mn2+, and Ba2+ in thapsigargin-treated cells. This inhibition was dependent on [Ca2+]i, barely detectable at [Ca2+]i of 50 nM and increasingly strong and fast to appear at 170 and 630 nM. Inhibition of entry by fMLP was complete within 5-10s, disappeared within 2-3 min, and was partially prevented by staurosporin (100 nM). Inhibition by PDB was equally fast, but no recovery was detected within 5 min, and it was fully prevented by staurosporin. The inhibitory effect of fMLP had similar characteristics when PAF was used instead of thapsigargin to induce the entry of Ca2+ or Mn2+. We conclude that fMLP, but not PAF, is able to produce a transient inhibition of store-operated Ca2+ entry pathway, probably mediated by protein kinase C. This action could be part of a general homeostatic mechanism designed to moderate [Ca2+]i increases induced by some agonists.  相似文献   

16.
Stimulation of human submandibular gland cells with carbachol, inositol trisphosphate (IP3), thapsigargin, or tert-butylhydroxyquinone induced an inward current that was sensitive to external Ca2+ concentration ([Ca2+]e) and was also carried by external Na+ or Ba2+ (in a Ca2+-free medium) with amplitudes in the order Ca2+ > Ba2+ > Na+. All cation currents were blocked by La3+ and Gd3+ but not by Zn2+. The IP3-stimulated current with 10 microM 3-deoxy-3-fluoro-D-myo-inositol 1,4,5-triphosphate and 10 mM 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid in the pipette solution, showed 50% inactivation in <5 min and >5 min with 10 and 1 mM [Ca2+]e, respectively. The Na+ current was not inactivated, whereas the Ba2+ current inactivated at a slower rate. The protein kinase inhibitor, staurosporine, delayed the inactivation and increased the amplitude of the current, whereas the protein Ser/Thr phosphatase inhibitor, calyculin A, reduced the current. Thapsigargin- and tert-butylhydroxyquinone-stimulated Ca2+ currents inactivated faster. Importantly, these agents accelerated the inactivation of the IP3-stimulated current. The data demonstrate that internal Ca2+ store depletion-activated Ca2+ current (ISOC) in this salivary cell line is regulated by a Ca2+-dependent feedback mechanism involving a staurosporine-sensitive protein kinase and the intracellular Ca2+ pump. We suggest that the Ca2+ pump modulates ISOC by regulating [Ca2+]i in the region of Ca2+ influx.  相似文献   

17.
1. The present study demonstrates that endothelin-3 (ET-3), previously shown to attenuate thrombin-evoked aggregation of human platelets, delayed the dose-dependent aggregatory response to thapsigargin (Tg). As this Ca(2+)-ATPase inhibitor induces platelet activation in part through the depletion of internal Ca(2+)-stores, we examined the influence of ET-3 on Ca2+ discharge from internal pools. 2. Cytosolic Ca2+ concentration was evaluated with Fura-2 in the absence of Ca2+ influx. Platelet preincubation for 15 min with 5 x 10(-7) M ET-3 decreased the Ca2+ release evoked by thrombin and U46619, a thromboxane-mimetic. However, ET-3 did not affect Ca2+ movements induced by 1 microM ADP. Addition of Tg (0.5 to 5 microM) to resting platelets induced a cytosolic [Ca2+] rise with concentration-dependent increase of the initial rate and decrease of the time to reach the peak. ET-3 slowed down these dose-dependent effects with a more marked influence on the responses induced by low concentrations of Tg. 3. ET-3 did not modify the Ca2+ response to another Ca(2+)-ATPase inhibitor, 2,5-di-(tert-butyl)-1,4-benzohydroquinone(tBuBHQ). The thromboxane A2 receptor antagonist, SQ 29548, reduced by 53% the calcium signal evoked by 1 microM Tg, which became similar to that induced by 15 microM tBuBHQ. Under these conditions, the ET-3 effects were suppressed. A subsequent addition of thrombin induced a substantial further Ca2+ increase which was again sensitive to ET-3. 4. ET-3 attenuates Ca2+ mobilization from an internal pool dependent on the stimulation of thrombin and thromboxane A2 receptors and insensitive to the direct effect of Ca2+-ATPase inhibitors. The small but significant inhibitory effect of ET-3 leads us to propose that endothelin-3 acts as a modulator of platelet activation.  相似文献   

18.
Receptor-mediated and capacitative Ca2+ entry are the primary Ca2+ entry pathways in endothelial cells (ECs). The mechanisms for Ca2+ entry via these pathways have not been fully elucidated. In this study, the effect of low and high external Mg2+ concentrations on these Ca2+ entry pathways was examined in human coronary arterial ECs. External Mg2+ concentration did not affect cytosolic free Mg2+ concentration. After exposure to thrombin in Ca(2+)-free medium, addition of Ca2+ to the medium caused a rise in cytosolic free Ca2+ concentration ([Ca2+]i), indicating thrombin-induced Ca2+ influx. Thrombin-induced Ca2+ influx was inhibited by not only low but also high external Mg2+ concentrations. After depletion of endoplasmic Ca2+ stores by thapsigargin, addition of Ca2+ to the medium induced an increase in [Ca2+]i, indicating capacitative Ca2+ entry. Capacitative entry was found to be accelerated by low external Mg2+ and inhibited by high external Mg2+ concentration. Results suggest that receptor-mediated Ca2+ influx requires external Mg2+ but is inhibited by increased external Mg2+ concentrations and that capacitative Ca2+ entry is reduced by external Mg2+ in human coronary arterial ECs.  相似文献   

19.
The actions of serotonin on rat basolateral amygdala neurons were studied with conventional intracellular recording techniques and fura-2 fluorimetric recordings. Bath application of 5-hydroxytryptamine (5-HT or serotonin) reversibly suppressed the excitatory postsynaptic potential in a concentration-dependent manner without affecting the resting membrane potential and neuronal input resistance. Extracellular Ba2+ or pertussis toxin pretreatment did not affect the depressing effect of 5-HT suggesting that it is not mediated through activation of Gi/o protein-coupled K+ conductance. The sensitivity of postsynaptic neurons to glutamate receptor agonist was unaltered by the 5-HT pretreatment. In addition, the magnitude of paired-pulse facilitation was increased in the presence of 5-HT indicating a presynaptic mode of action. The effect of 5-HT was mimicked by the selective 5-HT1A agonist 8-hydroxy-dipropylaminotetralin (8-OH-DPAT) and was blocked by the selective 5-HT1A antagonist 1-(2-methoxyphenyl)-4[4-(2-phthalimido)butyl]piperazine oxadiazol-3-yl]methyl]phenyl]-methanesulphonamide. In contrast, the selective 5-HT2 receptor antagonist ketanserin failed to affect the action of 5-HT. The effects of 5-HT and 8-OH-DPAT on the high K+-induced increase in [Ca2+]i were studied in acutely dissociated basolateral amygdala neurons. High K+-induced increase in [Ca2+]i was blocked by Ca2+-free solution and Cd2+ suggesting that Ca2+ entry responsible for the depolarization-evoked increase in [Ca2+]i occurred through voltage-dependent Ca2+ channels. Application of 5-HT and 8-OH-DPAT reduced the K+-induced Ca2+ influx in a concentration-dependent manner. The effect of 5-HT was completely abolished in slices pretreated with Rp-cyclic adenosine 3',5'-monophosphothioate (Rp-cAMP), a regulatory site antagonist of protein kinase A, suggesting that 5-HT may act through a cAMP-dependent mechanism. Taken together, these results suggest that functional 5-HT1A receptors are present in the excitatory terminals and mediate the 5-HT inhibition of synaptic transmission in the amygdala.  相似文献   

20.
Cytosolic acidification stimulates an influx of Ca2+ which results in shedding of the two flagella of Chlamydomonas. Ca2+ influxes are also involved in the photoresponses of this alga, but it is not understood how the acidification-activated Ca2+ influx is distinguished from the Ca2+ influxes which mediate phototaxis and the photophobic response. The present study focuses on the deflagellation-inducing Ca2+ influx pathway. Influx occurs through an ion channel or transporter with low abundance or low permeability to Ca2+ (approximately 500 fmol/s/10(6) cells in 50 microM Ca2+). Ca2+ influx was potently blocked by Cd3+ (EC50 approximately 5 microM), but was insensitive to Cd2+ (Quarmby, L.M., and H.C. Hartzell. 1994. J. Cell Biol. 124:807) and organic blockers of Ca2+ channels including SKF-96365 (up to 100 microM) and flufenamic acid (up to 1 mM). Experiments with a flagella-less mutant (bald-2), isolated flagella, and a blocker of flagellar assembly (colchicine) indicated that the acidification-stimulated Ca2+ influx pathway is not localized to the flagellar membrane. The acid-stimulated influx pathway was transiently inactivated after cells shed their flagella. Inactivation did not occur in the deflagellation mutant, fa-1, although acidification-stimulated Ca2+ influx was normal. This suggests that inactivation of this pathway in wild-type cells is probably not a direct consequence of acidification nor of Ca2+ influx, but may be related to deflagellation. Recovery of deflagellation-inducing Ca2+ influx occurred within 30 min after a 30 s exposure to acid and did not require flagellar assembly. The regulation, drug sensitivity, and subcellular localization identify acidification-stimulated Ca2+ influx as a specific Ca2+ entry pathway distinct from established Ca2+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号