首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 956 毫秒
1.
In this study the effects of angiotensin II (AII) angiotensin II hexapeptide [AII(1-6)] and angiotensin II pentapeptide [AII(2-6)] on the motility, stereotypy, learning of conditioned avoidance responses (CARs) and recall of a passive behavior making it possible to avoid aversive stimulation in rats, were compared. All the peptides were injected into the lateral cerebral ventricle (icv) in a dose of 1 nmol. AII caused a statistically significant increase in the number of crossings, rearings, and bar approaches in an open field whereas [AII(1-6)] and [AII(2-6)] were inactive in this test. The stereotypic behavior induced by an intraperitoneal (ip) injection of apomorphine (1 mg/kg) and amphetamine (7.5 mg/kg) was statistically significantly enhanced only in the rats which received AII icv. The application of AII, but not that of [AII(1-6)] and [AII(2-6)] resulted in a quicker acquisition of the CARs. A better recall of passive avoidance was achieved only by AII, while the fragments [AII(1-6)] and [AII(2-6)] had no effect. These findings indicate that the 1-6 and 2-6 fragments of AII do not possess a psychotropic activity like that of the parent octapeptide.  相似文献   

2.
In the present study we have shown the potential memory enhancing property of losartan, a selective Ang II AT1 receptor antagonist. Nootropic activity of losartan in mice was assessed by using passive avoidance step-down task and elevated plus-maze as a measure of short-term working and spatial memory respectively. Losartan at higher dose (10 mg/kg i.p) improved the basal performance in retention testing in both the test paradigms. Prior administration of losartan also attenuated retention deficit induced by scopolamine (0.3 mg/kg i.p). Moreover, physostigmine (0.05 mg/kg i.p) potentiated memory enhancing properties of losartan administered at lower dose (5 mg/kg i.p). On the basis of above observations it is concluded that the memory enhancing properties of losartan can be attributed to increased cholinergic activity.  相似文献   

3.
Exogenous angiotensin (Ang) 1-7 affects renal function, but the receptor(s) involved in this response remain(s) to be determined. In an in vitro preparation of proximal tubules, Ang 1-7 was shown to act on Ang II AT1 receptors (minor component), but also on a non-AT1, non-AT2 Ang receptor (major component) to inhibit reabsorption. In brain, Ang 1-7 also exerts effects mediated by a non-AT1, non-AT2 binding site; these effects are inhibited, however, by the angiotensin analog [7-D-Ala]-Ang 1-7. Therefore we tested the effect of Ang II AT1-receptor antagonist losartan and [7-D-Ala]-Ang 1-7 on the renal response to exogenous Ang 1-7 in standard renal-clearance experiments in the anesthetized rat. We found that Ang 1-7 (100 pmol/kg/min, i.a.) increased glomerular filtration rate (GFR), urinary flow rate (UV), and urinary sodium excretion (UNaV) without affecting mean arterial blood pressure (MAP) or urinary potassium excretion (UKV), confirming previous reports. Losartan (10 mg/kg, i.v.) blocked the pressor effect of exogenous Ang II (100 pmol/kg/min, i.a.), but did not significantly affect the renal response to Ang 1-7. Conversely, pretreatment with [7-D-Ala]-Ang 1-7 (5 nmol/kg/min) did not affect the pressor effect of Ang II, but abolished the renal response to Ang 1-7. Application of [7-D-Ala]-Ang 1-7 in the absence of exogenous Ang 1-7 did not alter MAP or GFR, but increased UNaV (by 52%). Our data indicate that similar to the response in brain, the renal response to exogenous Ang 1-7 may be mediated predominantly by a distinct non-AT1 binding site, which is sensitive to blockade by [7-D-Ala]-Ang 1-7. Furthermore, ambient endogenous Ang 1-7 acting on this distinct binding site may not contribute significantly to control of MAP or GFR, but exerts an antinatriuretic influence in the anesthetized rat.  相似文献   

4.
OBJECTIVES: The angiotensin type 1 (AT1) receptor antagonist, losartan (orally administered), decreases vasoconstrictor effects of angiotensin II (Ang II). Oral losartan is converted into the active metabolite, Exp3174, which causes most of the antagonistic effects. Effects of losartan as such have not been studied after its intra-arterial administration in humans. Therefore, we investigated the effects of both intra-arterially and orally administered losartan on AT1-receptor-mediated vasoconstriction. METHODS: Forearm vascular resistance (FVR) was determined by venous occlusion plethysmography in 24 healthy subjects. Ang II (0.01, 0.1, 1.0, and 10.0 ng/kg/min) was infused into the brachial artery, before and after losartan, administered intra-arterially (dose range 100-3000 ng/kg/min) or orally (50 mg once daily for 5 days). RESULTS: Ang II concentration-dependently increased FVR (P < 0.05); tachyphylaxis did not occur. Losartan alone did not change FVR. Intra-arterially infused losartan dose-dependently inhibited Ang-II-induced vasoconstriction. At a concentration of 10(-8) M Ang II, losartan reduced FVR, as a percentage of baseline values, from 287 +/- 30 to 33 +/- 8% (mean +/- s.e.m.; P < 0.05). Orally given losartan reduced FVR from 297 +/- 40 to 73 +/- 19% (P < 0.05). CONCLUSIONS: Losartan, intra-arterially administered, causes no effect on baseline vascular resistance, but markedly inhibits Ang-II-induced vasoconstriction in the human forearm vascular bed. Relatively high doses of intra-arterial losartan were required when compared to the antagonism by the orally administered drug. These data indicate that Ang-II-induced vasoconstriction is mediated by AT1-receptors, which are blocked by losartan. The more effective antagonism exerted by oral losartan is presumably explained by the formation of Exp3174. Endogenous Ang II does not contribute to baseline vascular tone in healthy, sodium-replete, subjects.  相似文献   

5.
6.
This study tested the hypothesis that baroreceptor vagal reflex (BVR) attenuation in developing rats, which occurs between postnatal ages (P) of 10 to 20 days old, is due to a central action of angiotensin II (Ang II). In urethane or halothane anaesthetised mature (P > 45) or pre-weaned rats (P14-18), BVR sensitivity was estimated as the ratio between the fall in heart rate and the increase in arterial pressure induced by i.v. phenylephrine. An Ang II AT1 receptor antagonist, losartan, was administered intra-venously (i.v.) or microinjected into brainstem structures. In pre-weaned rats BVR sensitivity was increased significantly by losartan (5 mg/kg; urethane anaesthesia: p < 0.01; halothane anaesthesia: p < 0.05) while a larger dose (10 mg/kg) was ineffective in mature animals. In pre-weaned rats, microinjection of losartan (500 pmol) into the nucleus tractus solitarii (NTS) but neither area postrema nor subjacent nuclei, reversibly increased the sensitivity of BVR (+89 +/- 19%; p < 0.01, n = 12). Microinjection of losartan (500 or 1500 pmol) into the NTS of mature rats did not change the BVR. An AT2-antagonist, PD123-319 did not restore the BVR sensitivity in pre-weaned rats. Thus, AT1 receptors located within the NTS play a pivotal role in the developmental attenuation of the BVR in pre-weaned rats.  相似文献   

7.
Blockade of angiotensin II (Ang II) function during 8 days of oral therapy with lisinopril (20 mg/kg) and losartan (10 mg/kg) normalized the arterial pressure (112+/-3/70+/-3 mm Hg) and raised the plasma concentrations of the vasodilator peptide angiotensin-(1-7) [Ang-(1-7)] of 21 male spontaneously hypertensive rats (SHR). Treated animals were then given a 15-minute infusion of either mouse immunoglobulin G1 or a specific monoclonal Ang-(1-7) antibody while their blood pressure and heart rate were recorded continuously in the awake state. The concentrations of Ang II and Ang-(1-7) in arterial blood were determined by radioimmunoassay. Infusion of the Ang-(1-7) antibody caused significant elevations in mean arterial pressure that were sustained for the duration of the infusion and were accompanied by transient bradycardia. Although the hemodynamic effects produced by infusion of the Ang-(1-7) antibody had no effect on plasma levels of Ang II, they caused a twofold rise in the plasma concentrations of Ang-(1-7). A pressor response of similar magnitude and characteristics was obtained in a separate group of SHR treated with the combination of lisinopril and losartan for 8 days during an infusion of [Sar1-Thr8]Ang II. The pressor response induced by the administration of this competitive, non-subtype-selective Ang II receptor blocker was not modified by pretreatment of the rats with an angiotensin type-2 (AT2) receptor blocker (PD123319). Plasma concentrations of Ang II and Ang-(1-7) were not changed by the administration of [Sar1-Thr8]Ang II either in the absence or in the presence of PD123319 pretreatment. These results are the first to indicate an important contribution of Ang-(1-7) in mediating the vasodilator effects caused by combined inhibition of angiotensin-converting enzyme and AT1 receptors. The comparable results obtained by administration of [Sar1-Thr8]Ang II suggest that the vasodepressor effects of Ang-(1-7) during the combined treatment is modulated by a non-AT1/AT2 angiotensin subtype receptor.  相似文献   

8.
Losartan is the first angiotensin II type 1 (AT1) receptor antagonist to become available for the treatment of hypertension. However, recent reports have revealed several cases of losartan-induced bronchoconstriction. We investigated to determine the mechanism of losartan-induced bronchoconstriction, considering in particular the involvement of endogenous nitric oxide (NO). In this study, we examined the effects of losartan on airway obstruction and endogenous NO production using anesthetized guinea pigs and cultured airway epithelial cells. Five minutes after administration of angiotensin II (Ang II), the bronchoconstriction induced by acetylcholine was not changed. In contrast, Ang II in the presence of losartan caused a significant increase in the acetylcholine responsiveness. Pretreatment with L-N omega-nitroarginine-methylester (L-NAME) potentiated acetylcholine-induced bronchoconstriction 5 min after administration of Ang II, and L-arginine reversed this action of L-NAME on the acetylcholine responsiveness. Moreover, Ang II administration increased NO concentration in expired air (12.5 +/- 1.5 ppb for saline, 40 +/- 5 ppb for Ang II, p < 0.01), and losartan significantly inhibited Ang II-stimulated NO release (20 +/- 3.5 ppb) from guinea pig airway. In cultured airway epithelial cells, Ang II also increased NO release (160 +/- 25 nM), and the effect of this Ang II-induced NO release was significantly inhibited by pretreatment with losartan (25 +/- 8 nM, p < 0.01). These findings suggest that losartan-induced bronchoconstriction may result from inhibition of endogenous NO release in the airway.  相似文献   

9.
10.
The influence of noncompetitive (MK-801), competitive (AP-7) and the antagonist of polyamines site of NMDA receptor (arcaine) on the central activity of angiotensin II (A II) was studied. The open field test, conditioning of active avoidance responses (CARs) and passive avoidance situation was used to investigate learning and memory in rats. All used antagonists decreased beneficial action of A II on these processes.  相似文献   

11.
The in vitro effects of angiotensin II (Ang II) in human vessels are not well studied. The development of specific Ang II-receptor antagonists has made it possible to delineate more carefully the receptor mechanisms involved. The objective of this study was twofold: to investigate the effect of Ang II on human coronary arteries and to study the effects of angiotensin II type 1 receptor blockade with losartan. The setting was contractile experiments with ring segments of coronary arteries. We observed that Ang II is a vasoconstrictor of human coronary arteries, with a pEC50 value of 9.26 +/- 0.22 and Emax of 68.7 +/- 9.61% of potassium-induced contraction. Losartan (10-100 nM) shifted the concentration-response curve of Ang II to the right, with pEC50 values of 7.64 +/- 0.10 and 7.00 +/- 0.15, respectively (p = 0.001), demonstrating the antagonistic properties of losartan. We also noted a decreased maximal response to Ang II after incubation of losartan, with Emax of 51.1 +/- 7.08% and 41.9 +/- 4.70% (p = 0.05), respectively. In conclusion, this is the first report describing the contractile effect of Ang II and the antagonizing effects of losartan in isolated human coronary arteries.  相似文献   

12.
We investigated the role of the brain angiotensin II (Ang II) receptor subtypes AT1 and AT2 in the development of fever induced in freely moving rats by administration of interleukin-1beta (IL-1beta) or prostaglandin E2 (PGE2). Intraperitoneal (i.p.) injection of IL-1beta (2 microg/kg) induced a marked fever of rapid onset. Intracerebroventricular (i.c.v.) administration, immediately before IL-1beta injection, of a selective AT2 receptor antagonist, CGP42112A (5 or 20 microg), reduced the fever in a dose-related manner. Rats given an i.c.v. injection of PGE2 (200 ng) developed a monophasic fever response that was attenuated by i.c.v. treatment with CGP42112A (10 or 20 microg) in a dose-related manner. The IL-1beta (2 microg/kg i.p.)- and PGE2 (200 ng i.c.v.)-induced fevers were unchanged by the selective AT1 receptor antagonist losartan (60 microg i.c.v.). Treatment with exogenous Ang II (100 ng i.c.v.), which itself had no effect on resting body temperature, resulted in an enhancement of the PGE2 (50 ng i.c.v.)-induced fever. The administration of CGP42112A (2 and 5 microg) into the rostral hypothalamus (preoptic/anterior hypothalamic region) reduced fevers induced by IL-1beta (2 microg/kg i.p.) or intrahypothalamic (i.h.) PGE2 (100 ng). Moreover, i.h. injection of Ang II (25 ng) augmented the PGE2 (25 ng i.h.)-induced fever. Finally, the i.h. administration, 15 min before i.h. PGE2 (100 ng), of the angiotensin-converting enzyme (ACE) inhibitor lisinopril (5 and 10 microg) attenuated the PGE2-induced fever. These results suggest that brain AT2 receptors contribute to the induction of such febrile responses in rats.  相似文献   

13.
L-163,017 (6-[benzoylamino]-7-methyl-2-propyl-3-[[2'-(N-(3-methyl-1-butoxy) carbonylaminosulfonyl)[1,1']-biphenyl-4-yl]methyl]-3H-imidazo[4,5- b]pyridine) is a potent, orally active, nonpeptide angiotensin II receptor antagonist. Conscious rats and dogs were dosed p.o. and i.v.; in both species the plasma bioequivalents are similar at the angiotensin AT1 and AT2 receptor sites indicating balanced activity is maintained in vivo. L-163,017 prevents the pressor response to intravenous (i.v.) angiotensin II in the conscious rat, dog, and rhesus monkey. L-163,017 also significantly reduces blood pressure in a renin-dependent model of hypertension, similar to an angiotensin converting enzyme inhibitor (Enalapril) and an angiotensin AT1 receptor-selective antagonist (L-159,282). These studies indicate that neither the angiotensin AT2 receptor nor bradykinin is important in the acute antihypertensive activity of angiotensin converting enzyme inhibitors or angiotensin II receptor antagonists.  相似文献   

14.
OBJECTIVE: Data concerning the effect of angiotensin II (Ang II) on plasma angiotensinogen levels are conflicting. Although Ang II is reported to stimulate the biosynthesis of angiotensinogen, plasma angiotensinogen is often depleted by renin when the level of renin, and therefore Ang II, increases. In the present study we used the Ang II subtype 1 (AT1) receptor antagonist losartan to investigate whether rising plasma Ang II levels stimulate angiotensinogen production to counteract the falling plasma angiotensinogen levels caused by increasing renin activity in plasma. METHOD: Angiotensinogen was measured in plasma from two previously reported studies in which 6-week-old stroke-prone spontaneously hypertensive rats (SHRSP) or Dahl salt-sensitive (Dahl-S) rats were fed high-salt diets (4 and 8% sodium chloride, respectively) for 10-12 weeks with or without losartan. RESULTS: As reported previously, plasma renin was suppressed during the first 4 weeks of the high-salt diet but then paradoxically increased in both strains. When plasma renin increased, plasma angiotensinogen levels fell to 45 and 62% of the baseline value. The plasma renin concentration was negatively correlated with plasma angiotensinogen both in SHRSP and in Dahl-S rats (r = -0.76, P < 0.001 and r = -0.60, P < 0.001, respectively). In Dahl-S rats losartan treatment was associated with lower levels of plasma angiotensinogen but caused greater increases in plasma renin. When differences in renin were taken into account, plasma angiotensinogen levels were not different in losartan-treated and untreated Dahl-S rats. Similarly to Dahl-S rats, plasma angiotensinogen fell in SHRSP when renin increased, but SHRSP had higher plasma angiotensinogen levels during losartan treatment because plasma renin concentration was lower. CONCLUSION: The present study shows, in two strains of hypertensive rat, that an increase in plasma renin levels is associated with a fall in plasma angiotensinogen levels. Concurrent treatment with an Ang II AT1 receptor antagonist does not augment this fall, except to the extent that renin rises further. The results provide no evidence for a significant tonic stimulatory effect of Ang II on plasma angiotensinogen levels.  相似文献   

15.
In vitro and animal studies have demonstrated that the effect of angiotensin II (Ang II) on aldosterone is mediated through the Ang II type 1 receptor. However, it has been difficult to demonstrate an effect of Ang II type 1 receptor blockade on aldosterone levels in human studies. One possible explanation is that subjects have not been studied under salt-controlled conditions. Therefore, we examined the effects of losartan on the aldosterone and renal plasma flow responses to Ang II infusion in six normotensive subjects under low and high salt conditions. Ang II was infused in graded doses (0.3 to 10 ng/kg per minute) in the presence and absence of losartan (a single 50-mg oral dose). Renal plasma flow was assessed by measurement of para-aminohippurate clearance. Blood pressure, plasma aldosterone levels (low salt conditions only), and para-aminohippurate clearance were measured before and after each Ang II dose. Losartan had no effect on baseline systolic pressure but attenuated the systolic pressure response to exogenous Ang II during both low salt (0.7 +/- 1.9 versus 6.7 +/- 1.4 mm Hg, P = .001) and high salt (2.0 +/- 1.9 versus 12.3 +/- 2.1 mm Hg, P = .006) conditions. Under low salt conditions, losartan reduced the baseline plasma aldosterone level from 1135 +/- 204 to 558 +/- 102 pmol/L (P = .015) and blocked the aldosterone response to Ang II (-49 +/- 110 versus +436 +/- 83 pmol/L, P = .019). During high salt conditions, losartan had no effect on baseline renal plasma flow but attenuated the renal plasma flow response to Ang II (-90.1 +/- 15.1 versus -185.1 +/- 2.6 mL/min per 1.73 m2, P = .013). These data confirm that losartan lowers both basal and exogenous Ang II-stimulated aldosterone levels under low salt conditions. Losartan does not significantly affect baseline renal plasma flow but does attenuate the renal plasma flow response to exogenous Ang II under high salt conditions.  相似文献   

16.
The objective of this study was to determine the effect of angiotensin I (Ang I) treatment in vivo on two major Ca-transport systems-the L-type voltage dependent calcium channel (L-VDCC) and the Na/Ca exchanger in rat heart. For our experiments we used four groups of rats, treated differently with saline, Ang I, the ACE inhibitor enalapril and/or combination of both for 6 days, every 24 h. We observed an increase in the activity, and also in mRNA expression of the Na/Ca exchanger, after repeated administration of Ang I in vivo. The maximal binding capacity of Ca-antagonist PN 200-110, which binds to the alpha 1 subunit of the L-VDCC was elevated from 0.8-1.85 pg/mg protein. mRNA expression of the voltage-dependent calcium channels of L-type system was also upregulated by Ang I administration, but not when enalapril was applied simultaneously with Ang I. These results demonstrate that in vivo application of the Ang I significantly modulates not only the activity, but also expression of the Na/Ca exchanger and the L-VDCC in rat hearts through angiotensin II (Ang II). Since in the in vitro experiments on the isolated cardiomyocytes, Ang II (100 nM) increased the calcium uptake after depolarization, and the AT1 receptor agonist losartan prevented this increase, we assume that this regulation might involve the AT1 receptors.  相似文献   

17.
BACKGROUND: We assessed the role of extracellular signal-regulated kinases (ERKs) in Ang II-stimulated contraction and associated signaling pathways in vascular smooth muscle cells (VSMCs) from human small arteries. METHODS AND RESULTS: VSMCs derived from resistance arteries (<300 microm in diameter) from subcutaneous gluteal biopsies of healthy subjects (n=8) were used to assess Ang II-stimulated [Ca2+]i, pHi, and contractile responses. [Ca2+]i and pHi were measured with fura 2-AM and BCECF-AM, respectively, and contraction was measured photomicroscopically in cells grown on Matrigel matrix. To determine whether tyrosine kinases and ERKs influence Ang II-stimulated responses, cells were pretreated with 10(-5) mol/L tyrphostin A-23 (tyrosine kinase inhibitor) and PD98059 (MEK inhibitor). Ang II-stimulated MEK activity was determined by tyrosine phosphorylation of ERKs. The angiotensin receptor subtypes (AT1 and AT2) were assessed with [Sar1,Ile8]Ang II (a nonselective subtype antagonist), losartan (a selective AT1 antagonist), and PD123319 (a selective AT2 antagonist). Ang II dose-dependently increased [Ca2+]i (pD2=8.4+/-0.36, Emax=541+/-55 nmol/L), pHi (pD2=9. 4+/-0.29, Emax=7.19+/-0.01), and contraction (pD2=9.2+/-0.21, Emax=36+/-2.2%). Ang II induced rapid tyrosine phosphorylation of ERKs, which was inhibited by PD98059. Tyrphostin A-23 and PD98059 attenuated (P<0.05) Ang II-stimulated second messengers, and PD98059 reduced Ang II-induced contraction by >50%. [Sar1,Ile8]Ang II and losartan, but not PD123319, blocked Ang II-stimulated responses. CONCLUSIONS: These data demonstrate that in VSMCs from human peripheral resistance arteries, functional Ang II receptors of the AT1 subtype are coupled to signaling cascades involving Ca2+ and pHi pathways that are partially dependent on tyrosine kinases and ERKs. ERKs, the signaling cascades characteristically associated with cell growth, may play an important role in Ang II-stimulated contraction of human VSMCs.  相似文献   

18.
In this study we determined the cardiovascular effects produced by microinjection of angiotensin peptides [Angiotensin-(1-7) and Angiotensin II] and angiotensin antagonists (losartan, L-158,809, CGP 42112A. Sar1-Thr8-Ang II, A-779) into the rostral ventrolateral medulla of freely moving rats. Microinjection of angiotensins (12.5-50 pmol) produced pressor responses associated to variable changes in heart rate, usually tachycardia. Unexpectedly, microinjection of both AT1 and AT2 ligands produced pressor effects at doses that did not change blood pressure in anesthetized rats. Conversely, microinjection of Sar1-Thr8-Ang II and the selective Ang-(1-7) antagonist, A-779, produced a small but significant decrease in MAP an HR. These findings suggest that angiotensins can influence the tonic activity of vasomotor neurons at the RVLM. As previously observed in anesthetized rats, our results further suggest a role for endogenous Ang-(1-7) at the RVLM. The pressor activity of the ligands for AT1 and AT2 angiotensin receptor subtypes at the RVLM, remains to be clarified.  相似文献   

19.
A previous report demonstrated that infusion of adenosine into the forearm increased local vascular production of angiotensin II. We hypothesize that this increase in angiotensin II could attenuate the vasodilator response to adenosine subtype 2 (A2) receptor activation. The depressor and regional hemodynamic responses to the A2-selective adenosine agonist DPMA were measured in the presence and absence of angiotensin subtype 1 (AT1) receptor blockade (losartan, 10 mg/kg IV) in anesthetized rats. Losartan pretreatment (without versus with losartan) significantly potentiated DPMA-induced reductions in renal (-13 +/- 2% versus -22 +/- 4%, P < .05) and mesenteric (-11 +/- 2% versus -23 +/- 4%, P < .05) vascular resistances, resulting in a greater depressor response (-7 +/- 2 versus -18 +/- 3 mm Hg, P < .05). The decrease in hindquarter vascular resistance was not affected. To test the specificity of this interaction, we also evaluated nitroglycerin and nifedipine. Pretreatment with losartan had no effect on the responses to nitroglycerin, whereas the responses to nifedipine either were not affected or were attenuated (percent change in mesenteric vascular resistance: without losartan pretreatment, -30 +/- 1%; with losartan pretreatment, -24 +/- 2%, P < .05). To determine whether the decrease in arterial pressure after losartan pretreatment contributed to the potentiation of the DPMA-mediated effects, we infused nitroglycerin to lower mean arterial pressure comparably to losartan treatment. None of the hemodynamic responses to subsequent DPMA administration were affected. These data suggest that endogenous levels of angiotensin II, whether released locally or systemically, selectively attenuate the A2-mediated reductions in renal and mesenteric vascular resistances.  相似文献   

20.
The present study was undertaken to investigate the effects of losartan, a non-peptide angiotensin II subtype 1 (AT1) receptor antagonist, on both the pressor responses elicited by stimulation of afferent vagal nociceptive fibres and the involvement of the sympathetic nervous system (evaluated by plasma levels of noradrenaline and its co-neurotransmitter neuropeptide Y) in dogs. Electrical stimulation of the afferent fibres of the vagus (1, 5, 10 and 20 Hz) elicited a frequency-dependent increase in blood pressure and heart rate. Plasma noradrenaline levels only increased after stimulation at frequencies of 10 and 20 Hz. Plasma neuropeptide Y levels did not change. Losartan (10 mg/kg i.v.) induced both a decrease in resting blood pressure and an increase in basal plasma levels of noradrenaline and neuropeptide Y. Losartan failed to modify the magnitude of the electrically-evoked pressor and positive chronotropic responses. The angiotensin AT1 receptor antagonist elicited a fall in plasma noradrenaline values after a 1 Hz stimulation and abolished the increase in plasma noradrenaline levels induced by the 10 (but not 20) Hz stimulation. The data suggest that angiotensin AT1 receptors are not directly involved in acute pressor responses induced by stimulation of afferent vagal fibres. Moreover, the results show that, besides its sympatho-inhibitory effect, losartan can exert a sympatho-excitatory action as shown by the increase in the plasma levels of both noradrenaline and its coneurotransmitter, neuropeptide Y.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号