首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The main objective of present study is to predict daily global solar radiation (GSR) on a horizontal surface, based on meteorological variables, using different artificial neural network (ANN) techniques. Daily mean air temperature, relative humidity, sunshine hours, evaporation, and wind speed values between 2002 and 2006 for Dezful city in Iran (32°16′N, 48°25′E), are used in this study. In order to consider the effect of each meteorological variable on daily GSR prediction, six following combinations of input variables are considered:
(I)
Day of the year, daily mean air temperature and relative humidity as inputs and daily GSR as output.
(II)
Day of the year, daily mean air temperature and sunshine hours as inputs and daily GSR as output.
(III)
Day of the year, daily mean air temperature, relative humidity and sunshine hours as inputs and daily GSR as output.
(IV)
Day of the year, daily mean air temperature, relative humidity, sunshine hours and evaporation as inputs and daily GSR as output.
(V)
Day of the year, daily mean air temperature, relative humidity, sunshine hours and wind speed as inputs and daily GSR as output.
(VI)
Day of the year, daily mean air temperature, relative humidity, sunshine hours, evaporation and wind speed as inputs and daily GSR as output.
Multi-layer perceptron (MLP) and radial basis function (RBF) neural networks are applied for daily GSR modeling based on six proposed combinations.The measured data between 2002 and 2005 are used to train the neural networks while the data for 214 days from 2006 are used as testing data.The comparison of obtained results from ANNs and different conventional GSR prediction (CGSRP) models shows very good improvements (i.e. the predicted values of best ANN model (MLP-V) has a mean absolute percentage error (MAPE) about 5.21% versus 10.02% for best CGSRP model (CGSRP 5)).  相似文献   

6.
7.
8.
Combustion in fired heaters, boilers and furnaces often accounts for the major energy consumption on industrial processes. Small improvements in efficiency can result in large reductions in energy consumption, CO2 emissions, and operating costs. This paper will describe some useful low cost modelling techniques based on the zone method to help identify energy saving opportunities on high temperature fuel-fired process plant.The zone method has for many decades, been successfully applied to small batch furnaces through to large steel-reheating furnaces, glass tanks, boilers and fired heaters on petrochemical plant. Zone models can simulate both steady-state furnace operation and more complex transient operation typical of a production environment. These models can be used to predict thermal efficiency and performance, and more importantly, to assist in identifying and predicting energy saving opportunities from such measures as:
Improving air/fuel ratio and temperature controls.
Improved insulation.
Use of oxygen or oxygen enrichment.
Air preheating via flue gas heat recovery.
Modification to furnace geometry and hearth loading.
There is also increasing interest in the application of refractory coatings for increasing surface radiation in fired plant. All of the techniques can yield savings ranging from a few percent upwards and can deliver rapid financial payback, but their evaluation often requires robust and reliable models in order to increase confidence in making financial investment decisions. This paper gives examples of how low cost modelling techniques can be applied to improve confidence in implementing energy efficiency improvements whilst safeguarding manufacturing output and quality.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
Total energy cost of household consumption in Norway, 1973   总被引:1,自引:0,他引:1  
Robert Herendeen 《Energy》1978,3(5):615-630
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号