共查询到20条相似文献,搜索用时 85 毫秒
1.
2.
3.
芳基硼酸在有机合成中的应用 总被引:1,自引:1,他引:1
芳基硼酸作为一种重要的中间体,在有机合成中的应用相当广泛。Suzuki偶联反应是合成联芳基结构最有效的方法之一,近年许多用于芳基硼酸与各种卤代芳烃偶合的催化剂相继被开发。芳基硼酸与苯酚在Cu(OAc)2和NEt3存在时用于合成二芳基醚,与胺的偶联是合成C-N键的有效方法,与,α-β不饱和体系的1,4-共轭加成反应广泛用于β-取代羰基化合物的合成。反应采用相对无毒而又廉价的普通试剂,反应条件温和,产率高,立体选择性好。综述了芳基硼酸在联芳基合成、二芳基醚合成、芳香胺合成和催化加成反应中的应用。 相似文献
4.
5.
7.
8.
9.
10.
11.
采用在双螺杆中熔融共混,以不同相对分子质量聚乙二醇(PEG)作为增塑剂,对聚乳酸(PLA)进行增塑改性,并把改性后的PLA进行熔融纺丝。用扫描电子显微镜(SEM)、熔体流动速率仪(MFR)、单纤维电子强力仪(EYST)和差示扫描量热仪(DSC)对改性PLA纤维进行表征。讨论了不同相对分子质量的PEG对PLA纤维性能的影响,发现随着PEG含量的增加,改性PLA的流动性增加。当PEG质量分数≤8%时,随着PEG含量的增加,改性PLA纤维强度增加,断裂伸长率增加,玻璃化转变温度(Tg)和熔点(Tm)下降。PLA与PEG组分间表现出较好的相容性。PEG200改性的PLA纤维综合效果最好。 相似文献
12.
聚丁二酸乙二醇酯(PES)具有优异的力学性能和生物降解性能,在可生物降解塑料领域具有广泛的应用前景。以乙二醇铝为催化剂,催化丁二酸和乙二醇直接酯化缩聚合成了高分子量聚丁二酸乙二醇酯(PES)。采用FT-IR和1H-NMR对催化剂和合成聚合物的结构进行了表征,系统分析了催化剂浓度、聚合反应温度和时间对聚合反应的影响。经常压酯交换后获得的预聚体,在240℃条件下,缩聚4 h后,合成PES的特性黏数[η]可达到0.684 dL/g,重均分子量Mw和数均分子量Mn分别可以达到78632和47945,相对分子质量分布系数PDI值为1.64。乙二醇铝体系中获得的PES聚合物分子量与商业锑系和钛系催化体系中合成聚合物分子量相当,具有广泛工业化应用前景。 相似文献
13.
14.
采用溶液共混法制备了一系列不同配比的聚乳酸(PLA)/聚乙二醇(PEG)共混物。通过偏光显微镜(POM)、扫描电镜(SEM)和差式扫描量热仪(DSC)研究了不同PEG含量的PLA/PEG共混物在不同结晶温度下,聚乳酸的晶体形貌、球晶生长速率及热力学性能。研究发现,PEG能够显著提高聚乳酸球晶的生长速率。当PEG含量为60%时,PLA/PEG共混物中聚乳酸球晶的生长速率最快,达到23.6μm/min,比纯聚乳酸的最快球晶生长速率(0.5μm/min)高47倍。但是,当PEG含量高于60%时,聚乳酸球晶的生长速率有所降低。同时,PLA/PEG共混物中聚乳酸球晶速率随结晶温度变化的取向,均向低温移动。另外,PLA/PEG共混物中聚乳酸球晶呈现环状花纹。DSC测试结果表明,随着PEG含量的增加,PLA/PEG共混物的玻璃化转变温度明显降低。 相似文献
15.
16.
Mihir Sheth R. Ananda Kumar Vipul Dav Richard A. Gross Stephen P. McCarthy 《应用聚合物科学杂志》1997,66(8):1495-1505
Poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG) were melt-blended and extruded into films in the PLA/PEG ratios of 100/0, 90/10, 70/30, 50/50, and 30/70. It was concluded from the differential scanning calorimetry and dynamic mechanical analysis results that PLA/PEG blends range from miscible to partially miscible, depending on the concentration. Below 50% PEG content the PEG plasticized the PLA, yielding higher elongations and lower modulus values. Above 50% PEG content the blend morphology was driven by the increasing crystallinity of PEG, resulting in an increase in modulus and a corresponding decrease in elongation at break. The tensile strength was found to decrease in a linear fashion with increasing PEG content. Results obtained from enzymatic degradation show that the weight loss for all of the blends was significantly greater than that for the pure PLA. When the PEG content was 30% or lower, weight loss was found to be primarily due to enzymatic degradation of the PLA. Above 30% PEG content, the weight loss was found to be mainly due to the dissolution of PEG. During hydrolytic degradation, for PLA/PEG blends up to 30% PEG, weight loss occurs as a combination of degradation of PLA and dissolution of PEG. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1495–1505, 1997 相似文献
17.
Supri A. Ghani Siti Hajar Mohd Din Jalilah Abd Jalil 《Polymer-Plastics Technology and Engineering》2016,55(9):929-936
The effect of polyaniline and poly(ethylene glycol) diglycidyl ether on tensile properties, morphology, thermal degradation, and electrical conductivity of poly(vinyl chloride)/poly(ethylene oxide)/polyaniline conductive films was studied. The poly(vinyl chloride)/poly(ethylene oxide)/polyaniline conductive films were prepared using a solution casting technique at room temperature until a homogeneous solution was produced. Poly(vinyl chloride)/poly(ethylene oxide)/polyaniline/poly(ethylene glycol) diglycidyl ether conductive films exhibit higher electrical properties, tensile strength, modulus of elasticity but lower final decomposition temperature than poly(vinyl chloride)/poly(ethylene oxide)/polyaniline conductive films. Scanning electron microscopy morphology showed that the polyaniline more widely dispersed in the poly(vinyl chloride)/poly(ethylene oxide) blends with the addition of poly(ethylene glycol) diglycidyl ether as surface modifier. 相似文献
18.
Minoru Nagata Tsuyoshi Kiyotsukuri Susumu Minami Naoto Tsutsumi Wataru Sakai 《Polymer International》1996,39(2):83-89
Poly(ethylene terephthalate) copolymers were prepared by melt polycondensation of dimethyl terephthalate and excess ethylene glycol with 10–40mol% (in feed) of poly(ethylene glycol) (E) and poly(tetramethylene glycol) (B), with molecular weight (MW) of E and B 200–7500 and 1000, respectively. The reduced specific viscosity of copolymers increased with increasing MW and content of polyglycol comonomer. The temperature of melting (Tm), cold crystallization and glass transition (Tg) decreased with the copolymerization. Tm depression of copolymers suggested that the E series copolymers are the block type at higher content of the comonomer. Tg was decreased below room temperature by the copolymerization, which affected the crystallinity and the density of copolymer films. Water absorption increased with increasing content of comonomer, and the increase was much higher for E1000 series films than B1000 series films. The biodegradability was estimated by weight loss of copolymer films in buffer solution with and without a lipase at 37°C. The weight loss was enhanced a little by the presence of a lipase, and increased abruptly at higher comonomer content, which was correlated to the water absorption and the concentration of ester linkages between PET and PEG segments. The weight loss of B series films was much lower than that of E series films. The abrupt increase of the weight loss by alkaline hydrolysis is almost consistent with that by biodegradation. 相似文献
19.
Brock Thomas J Tingsanchali JH Rosales AM Creecy CM McGinity JW Peppas NA 《Polymer》2007,48(17):5042-5048
Smart biomaterials composed of pH responsive polymers, poly((meth)acrylic acid), were synthesized using a precipitation polymerization technique. The microparticles were grafted with poly(ethylene glycol) (PEG) chains that are capable of complexing with the hydroxyl groups of the polyacid and interpenetrating into the mucus gel layer upon entry into the small intestine. Upon introduction of an alkaline solution, these materials imbibe a significant amount of water and create a highly viscous suspension. These materials have the necessary physicochemical properties to serve as mucoadhesive controlled release drug carriers for the oral delivery of drugs. 相似文献
20.
Poly(ethylene glycol) electrolyte gels were prepared by condensation reaction in the presence of tetraethoxysilane. Differential scanning calorimetry and X‐ray diffraction spectroscopy were used to investigate the thermal transition behavior and crystalline structure of polymer gels prepared. Both formation of crosslinks and incorporation of salts or plasticizers reduced the development of crystalline structure of poly(ethylene glycol)s. Cyclic voltammetric and ion‐conducting behaviors of polymer gels were analyzed using potentiostat and impedance spectroscopy, and those were also considerably affected by the crosslinking density of polymers and the concentration of electrolyte salt or plasticizers incorporated. Poly(ethylene glycol) gels possessing certain levels of electrolyte salt and plasticizer were expected to have applications of solid electrolytes for lithium polymer secondary batteries. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 948–956, 2002 相似文献