首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
采用共沉淀-高温固相法制备了富锂正极材料Li[Li0.2Ni0.2Mn0.6]O2,并使用Zr(OC3H7)4进行了Zr O2包覆改性。通过X射线粉末衍射(XRD)、透射电子显微镜(TEM)和电化学测试手段讨论了Zr O2包覆对材料的结构、形貌和电化学性能的影响。Zr O2能均匀覆盖在Li[Li0.2Ni0.2Mn0.6]O2颗粒表面,包覆后材料的电化学性能有一定的改善。包覆质量分数0.5%的Zr O2样品表现了提高的循环和倍率性能。首次放电容量(0.1 C,2.0~4.8 V)高达250.8 m Ah·g-1,循环45周(0.2C)容量保持为201.6 m Ah·g-1,2.0 C倍率放电容量可达123.2 m Ah·g-1。  相似文献   

2.
本文分别以柠檬酸(C6H8O7·H2O)和蔗糖(C12 H22 O11)为碳源,采用溶胶凝胶法合成了Li2 MnSiO4/C材料.X射线衍射(XRD)结果显示合成出的Li2 MnSiO4/C材料均属于正交晶系Pmn21空间群.扫描电子显微镜(SEM)结果表明合成出的Li2 MnSiO4/C1(以C6H8O7·H2O为碳源)材料粒径均在500 nm左右,Li2MnSiO4/C2(以C12 H22O11为碳源)材料粒径在1μn左右.充放电测试结果显示,Li2MnSiO4/C2较Li2 MnSiO4/C1有较高的首次不可逆容量;两种电极材料经几周循环后均具有稳定的循环性能,所制得的Li2 MnSiO4/C1较Li2 MnSiO4/C2具有高的循环容量.  相似文献   

3.
以钛酸四丁酯(TBT)、氢氧化锂(LiOH·H_2O)为原料,采用水热法合成锂离子电池负极材料纳米片状钛酸锂(Li4Ti5O12)。通过X-射线衍射、扫描电子显微镜、恒流充放电及电化学阻抗等技术对合成材料的结构、表面形貌及电化学性能进行表征。结果表明,制备的材料为片状结构,具有较大的比表面积,分散性较好。在电压为1.0~2.5 V,以0.5 C的倍率进行充放电,首次放电比容量高达180.2 m Ah/g,循环50次后,容量仍保持162.2 m Ah/g。在10 C高倍率下,放电比容量仍高达130.7 m Ah/g,材料表现出优异的循环性能和倍率性能。  相似文献   

4.
利用纳米TiO2颗粒和Li2CO3为原料,分别在不添加及添加中间相沥青的情况下通过固相反应制备出Li4Ti5O12及炭包覆的锂化钛酸锂Li4+x Ti5O12/C。Li4Ti5O12颗粒尺寸在0.5~3μm之间,而Li4+x Ti5O12/C颗粒尺寸比较均匀,在200~500 nm之间,且颗粒表面包覆了一层厚度约2 nm的炭层。充放电研究表明,Li4Ti5O12的可逆容量较低,而Li4+x Ti5O12/C则具有非常高的可逆容量、循环稳定性及容量保持率。同时,Li4+x Ti5O12/C可提供Li+补偿首次不可逆容量损失,导致首次库仑效率超过100%。Li4+x Ti5O12/C中预储锂量随碳源量的增加而增加,在碳源量5%条件下制得的Li4+x Ti5O12/C的首次脱锂容量超过嵌锂容量24.2 mAh·g-1。Li4+x Ti5O12/C有望消除锂离子全电池的首次不可逆容量损失并提高其容量。  相似文献   

5.
利用纳米TiO2颗粒和Li2CO3为原料,分别在不添加及添加中间相沥青的情况下通过固相反应制备出Li4Ti5O12及炭包覆的锂化钛酸锂Li4+x Ti5O12/C。Li4Ti5O12颗粒尺寸在0.5~3μm之间,而Li4+x Ti5O12/C颗粒尺寸比较均匀,在200~500 nm之间,且颗粒表面包覆了一层厚度约2 nm的炭层。充放电研究表明,Li4Ti5O12的可逆容量较低,而Li4+x Ti5O12/C则具有非常高的可逆容量、循环稳定性及容量保持率。同时,Li4+x Ti5O12/C可提供Li+补偿首次不可逆容量损失,导致首次库仑效率超过100%。Li4+x Ti5O12/C中预储锂量随碳源量的增加而增加,在碳源量5%条件下制得的Li4+x Ti5O12/C的首次脱锂容量超过嵌锂容量24.2 mAh·g-1。Li4+x Ti5O12/C有望消除锂离子全电池的首次不可逆容量损失并提高其容量。  相似文献   

6.
以Mg(CH3 COO)2·4H2O,CO(CH3 COO)2-4H2O作为Mg2+和CO2+的掺杂源,以乙醇为溶剂,C6H15 NO3作为络合剂,CH3,COOLi·2H2O和Ti(OC4 H9)4作为原料,利用溶胶-凝胶法制备复合掺杂2种金属的Li4-xMg-Ti5-yCoyO12材料,并对其进行了X射线衍射(XRD)、扫描电镜(SEM)、电化学阻抗(EIS)、循环伏安(CV)、激光粒度等测试.结果表明,该法制备的样品具有良好的尖晶石型晶体结构以及较优的充放电性能.当x=0.02,y = 0.05时,在1.0~-2.5 V内,以0.1 C倍率循环时,Li3.98Mg0.O2Ti4.95 Co0.05O12样品首次放电比容量高达165.0 mAh/g,比未掺杂Mg2+和Co2+时(139.9 mAh/g)提高了17.9%.经过多次不同倍率的充放电循环后,0.1 C的放电比容量仍保持为143.4 mAh/g,且充放电效率始终维持在99%以上,具备良好的电化学性能.  相似文献   

7.
以钛酸四丁酯、醋酸锂、柠檬酸和竹炭为原料,采用两步煅烧和溶胶-凝胶法制备锂离子电池Li4Ti5O12/C负极材料。采用XRD、SEM表征材料的微观结构和形貌。采用恒流充放电、交流阻抗和循环伏安法研究材料的电化学性能。结果显示,Li4Ti5O12/C具有良好的结晶度,颗粒表面光滑,分散均匀,粒径为200~300 nm。10 C倍率下,Li4Ti5O12/C的首次放电比容量为180.4 mA•h/g,循环300圈后为167.5 mA•h/g,容量保持率为92.8%,远高于Li4Ti5O12的46.9%。在20 C大倍率下,Li4Ti5O12/C和Li4Ti5O12的容量保持率分别为68.9%和41.3%  相似文献   

8.
以钛酸四丁酯((C_4H_9O)_4Ti)为原料,以聚乙烯吡咯烷酮(PVP)为粘结剂,采用静电纺丝技术制备了锂离子电池负极材料Ti O_2,研究了不同保温时间对材料性能的影响。采用X射线衍射及扫描电子显微镜分别对样品物相及形貌进行了表征,结果表明,在450℃下保温1 h、2 h、3 h均得到了纤维状结构的纯相锐钛矿Ti O_2。室温条件下的充放电测试表明,保温2 h制备的氧化钛具有最好的电化学性能,其在0.2 C、0.5 C、1 C、2 C充放电倍率下首圈容量分别为203.2 m Ah/g、177.2 m Ah/g、153.4 m Ah/g、131.6 m Ah/g,以0.2 C的倍率循环100圈后,容量保持率为89%。  相似文献   

9.
微波辅助溶胶-凝胶法合成锂离子电池负极材料Li_4Ti_5O_(12)   总被引:2,自引:0,他引:2  
以微波辅助溶胶-凝胶法合成Li4Ti5O12、Al或C掺杂的Li4Ti5O12样品。用X射线衍射仪、扫描电子显微镜分别表征所得产物的结构和形貌,研究不同样品在恒流充放电条件下的电化学性能。结果表明:合成Li4Ti5O12粉体的最佳微波处理条件为800℃、40min;微波热处理合成样品颗粒尺寸为100nm左右,掺Al或C样品颗粒的分散性要优于未掺样品的。首次充放电结果表明:所有样品的放电平台平稳,掺Al或C样品的首次放电容量均高于未掺样品的,掺C样品的首次放电容量为162mA·h/g,更接近Li4Ti5O12的理论容量(175mA·h/g)。  相似文献   

10.
以V_2O_5、LiOH、NH_4H_2PO_4、Al(OH)_3和柠檬酸为原料采用溶胶-凝胶法合成V位掺杂Al3+的Li_3V_(2-x)Al_x(PO_4)_3/C复合材料,仔细研究Al3+掺杂对磷酸钒锂材料电化学性能的影响,确定最佳的Al掺杂量。同时借助各种分析手段(如XRD、SEM、TG-DTA)对掺杂后Li_3V_(2-x)Al_x(PO_4)3/C材料结构变化进行探究,深入理解V位掺杂对电化学性能产生作用的内在机理。Li_3V_2-xAlx(PO_4)_3/C(x=0,0.02,0.05,0.1,0.15,0.2)首次放电比容量分别为103.7 m Ah/g,105.7 m Ah/g,108.4 m Ah/g,141.1 m Ah/g,130.1 Ah/g,124.8 m Ah/g。在一定范围内,随着Al3+量的提高,相应的Li3V2-xAlx(PO4)3/C的首次放电比容量也不断的增加。  相似文献   

11.
本文以葡萄糖为碳源,采用原位复合法制备锂离子电池复合负极材料Li4Ti5O12@C,同时探讨了不同碳包覆量对Li4Ti5O12的影响。通过X-射线衍射和扫描电子显微镜对合成出的材料结构及表面形貌进行表征,采用恒电流充放电和电化学阻抗等技术对其进行电化学性能测试。结果表明:碳包覆量为3 %的Li4Ti5O12颗粒均匀且电化学性能最好。在0.5 C下,首次放电比容量为185.9 mAh/g,循环50次后,其放电比容量仍为161.5 mAh/g。在2.0 C下,首次放电比容量为99.9 mAh/g,材料表现出优良的电化学性能。  相似文献   

12.
以醋酸锰、氢氧化锂为原料,以柠檬酸为络合剂,n(柠檬酸):n(锂)=1:1,采用柠檬酸辅助溶胶-凝胶法制备了富锂尖晶石Li1+xMn2O4 (x=0,0.02,0.05,0.07),采用TG-DTA、XRD、SEM分别对前驱体和目标材料进行了表征,采用恒流充放电及循环伏安(CV)测试对材料进行了电化学性能表征,考察了不...  相似文献   

13.
以Fe2O3为Fe源、LiH2PO4为Li源和P源、分别以聚乙烯醇(PVA)、淀粉、柠檬酸为碳源,采用液相分散混合、雾化造粒及高温固相处理工艺制备得到碳包覆的磷酸铁锂正极材料(LiFePO4/C),考察不同有机碳源包覆改性对磷酸铁锂正极材料物理及电化学性能的影响。结果表明:以聚乙烯醇包覆制备的LiFePO4/C材料的首次放电比容量为153.8 mAh/g,首次效率大于90%,材料物相纯正,颗粒呈类球形均匀分布、无团聚现象;淀粉包覆的样品的比容量稍低,为144.4 mAh/g,柠檬酸包覆的产物的比容量最低,为139.4 mAh/g。  相似文献   

14.
用NH4HCO3为起泡剂共沉淀法成功的合成出一种多孔类球形钛酸锂,并对它的结构及电化学性能进行了研究。经测试表明合成出的Li4Ti5O12振实密度达到1.68 g/cm3,采用XRD粉末衍射测试表明产物为纯相尖晶石型Li4Ti5O12,扫描电镜表明产物为平均尺寸为2~5μmd的多孔的类球体结构。在1.0~3.0 V下充放电0.1 C、1 C、1.5 C、2 C、3 C倍率下首次放电容量分别为176.4、151.6、143.8、138.5 mAh/g。  相似文献   

15.
以Mg(CH3 COO)2·4H2O,CO(CH3 COO)2-4H2O作为Mg2+和CO2+的掺杂源,以乙醇为溶剂,C6H15 NO3作为络合剂,CH3,COOLi·2H2O和Ti(OC4 H9)4作为原料,利用溶胶-凝胶法制备复合掺杂2种金属的Li4-xMg-Ti5-yCoyO12材料,并对其进行了X射线衍射(XR...  相似文献   

16.
无定形TiO2合成尖晶石Li4Ti5O12的性能   总被引:5,自引:0,他引:5  
用无定形TiO2与Li2CO3高温固相反应合成了性能良好的"零应变"电极材料Li4Ti5O12. XRD, SEM和激光粒度分析表明,产物结晶度好,无杂质相,为纯立方尖晶石相,Li4Ti5O12颗粒呈砾石状形貌,有团聚现象,平均粒度约2.66 μm. Li4Ti5O12电极具有较宽的充放电平台,循环性能稳定. 以0.1 C电流比率恒电流充放电,首次放电容量和循环容量分别达180和150 mA·h/g. 交流阻抗谱研究发现,Li4Ti5O12不同嵌锂程度下的电导率对其电极的电化学阻抗具有较大影响,电极的Warburg阻抗曲线斜率与其荷电状态相关.  相似文献   

17.
以四氯化钛、氢氧化锂为原料,采用模板法,获得前躯体(Li1.81H0.19)Ti2O5·0.262 5TiO2,再通过煅烧,得到纳米钛酸锂(Li4Ti5O12)。最佳制备工艺条件为:模板∶钛(摩尔比)为4∶1,700℃煅烧1 h。采用TEM电镜观测的粒度达到10~100 nm,XRD拟合粒径5~30 nm,比表面积达100~600 m2/g。  相似文献   

18.
Mg2+、Zr4+离子掺杂对Li4Ti5O12电化学性能的影响   总被引:1,自引:0,他引:1  
以固相反应法合成了尖晶石型Li4Ti5O12电极材料,进行了金属离子掺杂以提高其导电性及综合性能,以适应用于大电流充放电的目的。采用XRD、室温恒流充放电循环、交流阻抗和循环伏安等测试手段,考察了A位掺杂Mg(Li4-xMgxTi5O12,x=0.15),B位掺杂Zr(Li4ZrxTi5-xO12,x=0.15)对Li4Ti5O12结构和电化学性能的影响。结果表明:掺杂少量的Mg2+、Zr4+未引起材料结构的变化,明显降低了Li4Ti5O12电荷转移阻抗,使导电性得到有效提高。0.1 C放电倍率下放电,未掺杂及掺杂Mg2+、Zr4+的Li4Ti5O12首次放电容量分别为159.8、144.9、161.2mAh/g,循环40次后,容量分别保持为113.8、130.6、133.6 mAh/g。与未掺杂的Li4Ti5O12相比,掺杂后的电极材料极化减小、循环容量及稳定性提高。  相似文献   

19.
采用高温固相法、热聚合法和改良溶胶-凝胶法制备锂离子电池负极材料Li4Ti5O12。通过X-射线衍射、扫描电镜、恒电流充放电及电化学阻抗等技术和手段表征合成产物的结构、形貌及电化学性能。结果表明:溶胶-凝胶法合成的粉末为纯相Li4Ti5O12,而高温固相法和聚合法合成的Li4Ti5O12则存在TiO2杂相。高温固相法合成的Li4Ti5O12粉末晶粒最大,溶胶-凝胶法合成的粉末晶粒最小,分布最为均匀,晶粒尺寸约为80nm。高温固相法、热聚合法和溶胶-凝胶法制备的Li4Ti5O12粉末首次放电容量分别为161.6mAh/g、165.9mAh/g和171.5mAh/g,循环25次后的容量保持率分别为84.7%、87.7%和94.3%,溶胶-凝胶法合成的Li4Ti5O12粉末电化学性能最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号