首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with analyses and reduced scale tests carried out to validate the design of flexible protection structures for bridge piers against ship impact. The protection system analyzed is part of the fixed link currently under construction across the Parana River between the cities of Rosario and Victoria in Argentina, and it will protect a cable-stayed bridge and parts of the approach viaduct against impact of aberrant vessels with sizes up to 100,000 DWT. The protection system was designed on the basis of dissipated energy and consists of groups of steel-encased large diameter concrete piles connected at the top by a reinforced concrete platform. The impact energy is to be absorbed by large horizontal displacements of the pile caps that involve large deformations of the surrounding soil and geometrically and material nonlinear response of the pile shafts themselves. The paper focuses on modeling the nonlinear characteristics of the response of the structure, and on its assessment by means of 1:15 scale model tests performed in both the laboratory and in the field to account for the displacements and deformations undergone by the pile shafts.  相似文献   

2.
This paper presents the experimental results from static and fatigue testing on a scale model of a hybrid fiber-reinforced polymer (FRP)–concrete bridge superstructure. The hybrid superstructure was designed as a simply-supported single span bridge with a span of 18.3 m. Three trapezoidal glass fiber-reinforced polymer (GFRP) box sections are bonded together to make up a one-lane superstructure, and a layer of concrete is placed in the compression side of those sections. This new design was proposed in order to reduce the initial costs and to increase the stiffness of GFRP composite structures. Static test results showed that the bridge model meets the stiffness requirement and has significant reserve strength. The bridge model was also subjected to two million load cycles to investigate its fatigue characteristics. The fatigue testing revealed that the structural system exhibits insignificant stiffness degradation.  相似文献   

3.
This report describes the installation and testing of a fiber-reinforced polymer composite highway bridge located in Butler County, Ohio. The bridge was designed to meet AASHTO HS-20 load requirements based on strength and maximum deflection. The installation demonstrated fiber-reinforced polymer composite highway bridges could be installed in significantly less time than a traditional reinforced concrete bridge. When fully loaded the bridge deflected less than the maximum AASHTO HS-20 deflection values.  相似文献   

4.
The U.S. Interstate 80 bridge over State Street in Salt Lake City is very near the Wasatch fault, which is active and capable of producing large earthquakes. The bridge was designed and built in 1965 according to the 1961 American Association of State Highway Officials specifications, which did not consider earthquake-induced forces or displacements. The bridge consists of reinforced concrete bents supporting steel plate welded girders. The bents are supported on cast-in-place concrete piles and pile caps. A seismic retrofit design was developed using carbon fiber reinforced polymer (CFRP) composites, which was implemented in the summer of 2000 and the summer of 2001, to improve the displacement ductility of the bridge. The seismic retrofit included column jacketing, as well as wrapping of the bent cap and bent cap-column joints for confinement, flexural, and shear strength increase. This paper describes the specifications developed for the CFRP composite column jackets and composite bent wrap. The specifications included provisions for materials, constructed thickness based on strength capacity, and an environmental durability reduction factor. Surface preparation, finish coat requirements, quality assurance provisions, which included sampling and testing, and constructability issues regarding the application of fiber composite materials in the retrofit of concrete bridges are also described.  相似文献   

5.
This paper presents experimental and analytical work conducted to explore the feasibility of using an innovative technique for seismic retrofitting of RC bridge columns using shape memory alloys (SMAs) spirals. The high recovery stress associated with the shape recovery of SMAs is being sought in this study as an easy and reliable method to apply external active confining pressure on RC bridge columns to improve their ductility. Uniaxial compression tests of concrete cylinders confined with SMA spirals show a significant improvement in the concrete strength and ductility even under small confining pressure. The experimental results are used to calibrate the concrete constitutive model used in the analytical study. Analytical models of bridge columns retrofitted with SMA spirals and carbon fiber-reinforced polymer (CFRP) sheets are studied under displacement-controlled cyclic loading and a suite of strong earthquake records. The analytical results proves the superiority of the proposed technique using SMA spirals to CFRP sheets in terms of enhancing the strength and effective stiffness and reducing the concrete damage and residual drifts of retrofitted columns.  相似文献   

6.
A number of older bridges were constructed with floor systems consisting of a noncomposite concrete slab over steel girders. A potentially economical means of strengthening these floor systems is to connect the existing concrete slab and steel girders with postinstalled shear connectors to permit the development of composite action. This paper presents the results of an experimental investigation of this concept. Five large-scale noncomposite beams were constructed, and four of these were retrofitted with postinstalled shear connectors and tested under static load. The retrofitted composite beams were designed as partially composite with a 30% shear connection ratio. A noncomposite beam was also tested as a baseline specimen. Test results showed that the strength and stiffness of existing noncomposite bridge girders can be increased significantly. Further, excellent ductility of the strengthened partially composite girders was achieved by placing the postinstalled shear connectors near zero-moment regions to reduce slip demand on the connectors. The test results also showed that current simplified design approaches commonly used for partially composite beams in buildings provide good predictions of the strength and stiffness of partially composite bridge girders strengthened using postinstalled shear connectors.  相似文献   

7.
This paper presents an evaluation of flexural live-load distribution factors for a series of three-span prestressed concrete girder bridges. The response of one bridge, measured during a static live-load test, was used to evaluate the reliability of a finite-element model scheme. Twenty-four variations of this model were then used to evaluate the procedures for computing flexural live-load distribution factors that are embodied in three bridge design codes. The finite-element models were also used to investigate the effects that lifts, intermediate diaphragms, end diaphragms, continuity, skew angle, and load type have on distribution factors. For geometries similar to those considered in the development of the American Association of State Highway and Transportation Officials Load and Resistance Factor Design Specifications, the distribution factors computed with the finite-element models were within 6% of the code values. However, for the geometry of the bridge that was tested, the discrepancy was 28%. Lifts, end diaphragms, skew angle, and load type significantly decreased the distribution factors, while continuity and intermediate diaphragms had the least effect. If the bridge had been designed using the distribution factors calculated with the finite-element model rather than the code values, the required concrete release strength could have been reduced by 6.9 MPa (1,000 psi) or the live load could have been increased by 39%.  相似文献   

8.
A fiber-reinforced polymer (FRP) composite cellular deck system was used to rehabilitate a historical cast iron thru-truss structure (Hawthorne St. Bridge in Covington, Va.). The most important characteristic of this application is reduction in self-weight, which raises the live load-carrying capacity of the bridge by replacing the existing concrete deck with a FRP deck. This bridge is designed to HL-93 load and has a 22.86?m clear span with a roadway width of 6.71?m. The panel-to-panel connections were accomplished using full width, adhesively (structural urethane adhesive) bonded tongue and groove splices with scarfed edges. To ensure proper construction, serviceability, and strength of the splice, a full-scale two-bay section of the bridge with three adhesively bonded panel-to-panel connections was constructed and tested in the Structures Laboratory at Virginia Tech. Test results showed that no crack initiated in the joints under service load and no significant change in stiffness or strength of the joint occurred after 3,000,000 cycles of fatigue loading. The proposed adhesive bonding technique was installed in the bridge in August 2006.  相似文献   

9.
A severe maintenance penalty exists for composite multibeam highway bridges in areas where the use of deicing chemicals is prevalent. This maintenance concern is largely due to the corrosion of embedded steel reinforcing bars and the attendant concrete degradation in the deck slab. Transverse steel straps, placed below the concrete slab, eliminate the deleterious effects of corrosion on the concrete. Further, the straps can be designed to provide the restraint necessary to promote the development of internal arching in the concrete slab in response to a concentrated load. A design procedure is presented for an externally restrained highway bridge deck. The method has been developed, based on the Canadian Limit States design philosophy, considering both the strength and serviceability requirements. It is demonstrated that the ultimate strength requirements dictate the external restraint requirements, and a numerical example of the design procedure is given.  相似文献   

10.
The design and construction of bridge systems with long-term durability and low maintenance requirements is a significant challenge for bridge engineers. One possible solution to this challenge could be through the use of new materials, e.g., fiber-reinforced polymer (FRP) composites, with traditional materials that are arranged as an innovative hybrid structural system where the FRP serves as a load-carrying constituent and a protective cover for the concrete. This paper presents the results of an experimental investigation designed to evaluate the performance of a 3/4 scale hybrid FRP-concrete (HFRPC) bridge deck and composite connection under sustained and repeated (fatigue) loading. In addition, following the sustained-load and fatigue portions of the experimental study, destructive testing was performed to determine the first strength-based limit state of the hybrid deck. Results from the sustained-load and fatigue testing suggest that the HFRPC deck system might be a viable alternative to traditional cast-in-place reinforced concrete decks showing no global creep behavior and no degradation in stiffness or composite action between the deck and steel girders after 2 million cycles of dynamic loading with a peak load of 1.26 times the scaled tandem load (TL). Furthermore, the ultimate strength test showed that the deck failed prior to the global superstructure at a load approximately six times the scaled TL.  相似文献   

11.
Assessment of Performance of Seismic Isolation System of Bolu Viaduct   总被引:2,自引:0,他引:2  
The Bolu viaduct is a 2.3-km-long seismically isolated structure that was nearly complete when it was struck by the 1999 Duzce earthquake in Turkey. It suffered complete failure of the seismic isolation system and narrowly avoided total collapse due to excessive superstructure movement. This paper presents an evaluation of the design of the viaduct’s seismic isolation system and an assessment of its performance in the Duzce earthquake. Evaluation of the seismic isolation system’s design has revealed that it did not meet the requirements of the AASHTO Guide Specifications for Seismic Isolation Design. Analysis of the viaduct with motions scaled in accordance with the AASHTO Guide Specifications resulted in a displacement demand of 820 mm, which is far more than the 210 mm displacement capacity of the existing isolation system. Analysis of the viaduct for a simulated near-fault motion with characteristics consistent with the site conditions resulted in an isolation system displacement demand of 1,400 mm. This indicates that, even if the isolation system had been designed in compliance with the AASHTO, it would have still suffered damage in the earthquake.  相似文献   

12.
This paper presents the results of static live load tests performed on several spans of the San Antonio “Y” Project, Phase IIC, prior to its opening to traffic. The San Antonio “Y” Project is an urban viaduct comprising primarily precast segmental box girders erected using span-by-span methods and utilizing a mix of internal and external posttensioning tendons. As part of a comprehensive field investigation, four spans of the project were instrumented to measure overall span deflections, strains in external posttensioning tendons, and concrete surface strains. The four instrumented spans included one end span and the center span of a three-span continuous unit, one span of a two-span ramp unit that was transversely posttensioned to the adjacent main line unit, and one span of a two-span unit connected only with a continuous top slab over the center support (so called “poor boy” continuity). The spans were loaded using combinations of heavily loaded 7-yd short-bed dump trucks positioned to simulate AASHTO MS18 (HS20-44) truckloads. Measurements of span deflections, external tendon strains, and limited concrete surface strains are reported and compared with analytical predictions. Overall, the bridge spans behaved very predictably under static live load conditions.  相似文献   

13.
This paper describes the design and evaluates the adequacy of the moment connection of an experimental two-span highway bridge designed by the Tennessee Department of Transportation. The Massman Drive Bridge is an experimental design that unifies the construction economy of simple span bridges and the structural economy of continuous span bridges. The experimental connection, consisting of cover plates and kicker wedge plates, is used to connect the two adjoining girders over the center pier. As a result, the bridge is designed to function as a continuous bridge during the deck pour and behave compositely with the reinforced concrete deck under the live load. After completing a moment comparison analysis, it is concluded that the Massman Drive Bridge indeed acts as continuous over the pier as it was designed.  相似文献   

14.
This paper presents the results from Phase II of an experimental study on the behavior of reinforced concrete bridge columns in cold seismicly active regions. Six half-scale circular reinforced concrete columns, designed to be flexural dominated, were tested under reversed cyclic loading while subjected to temperatures ranging from ?36°C (?33°F) to 22°C (72°F). Four of the units tested were reinforced concrete filled steel tube (RCFST) columns and the other two were ordinary reinforced concrete columns. Results obtained reiterated the observations made in Phase I, which is that low temperatures cause an increase in the flexural strength and initial stiffness as well as a reduction in the spread of plasticity and displacement capacity of the column. Another important observation made was that the plastic hinge length is drastically reduced in the RCFST units compromising the displacement capacity of this type of column even at room temperature conditions. Current predictive models were revised and modified to account for the low-temperature effect.  相似文献   

15.
Portland cement concrete overlay on bridge deck is subjected to distresses of cracking and interface debonding under the effects of repeated vehicle loading and temperature cycling. In order to improve the overlay performance, this research used the polyacrylamide (PAM) polymer to modify the mechanical properties of concrete. The direct shear and impact resistance tests were designed to measure the interface bonding strength and dynamic performance, respectively. The comprehensive and flexural strength and three-point bending fatigue tests were conducted following the standards. Meanwhile, the three-dimensional finite-element (FE) models of the T-girder and box-girder bridges under the moving traffic loadings were built to analyze the stress response and improve the structural design. An analytical model of flexural stress was developed and validated the FE modeling results. A rubber cushion was designed in the FE model to “absorb” the flexural stress. Laboratory testing results indicate that PAM can significantly improve the flexural strength, bonding strength, impact resistance, and fatigue life of concrete. The modified concrete with 8% PAM by mass of cement poses higher flexural strength and impact resistance than concretes with other PAM percentages. FE simulation results indicate that there exists a critical overlay thickness inducing the maximum interface shear stress, which should be avoided in the structural design. The rubber cushion can effectively relieve the flexural stress.  相似文献   

16.
The general objective of this research was the construction and evaluation of a bridge using high-performance lightweight concrete (HPLWC). The resulting bridge over the Chickahominy River near Richmond, Va., consists of 15 prestressed American Association of State Highway and Transportation Officials (AASHTO) Type IV girders made of HPLWC with a density of 1,920?kg/m3 and a minimum required 28-day compressive strength of 55?MPa. The bridge also has a lightweight concrete (LWC) deck with a density of 1,850?kg/m3 and a minimum required 28-day compressive strength of 30?MPa. This research study is chiefly concerned with investigating the effects of using lightweight concrete in prestressed girders on transfer length, development length, flexural strength, girder live-load distribution factor, and dynamic load allowance. Transfer length was determined to be 432?mm, or 33?db, for several girders at the time of prestress transfer. The development length was determined to be between 1,830 and 2,440?mm, while the flexural strength ranged from 11 to 30% higher than the AASHTO flexural capacity. The measured distribution factors and dynamic load allowance were smaller than the AASHTO standard and LRFD values.  相似文献   

17.
It is well known that the U.S. bridge inventory stands in need of repair. For a rational allocation of U.S. investment resources to bridge maintenance, life cycle cost and probabilistic methods must be used. This requires a quantitative estimate of the remaining strength over the intended lifespan for a given bridge. Although nondestructive evaluation methods are becoming established for bridge inspection purposes, specific recommendations for the application of these methods for individual bridges do not exist. This study focuses on reported damage and damage modeling for concrete bridges, with particular attention to Colorado bridges. A survey on degradation mechanisms is briefly presented. Bridge damage is reviewed for a variety of concrete bridges based on information in the literature and from field studies performed by the Colorado Department of Transportation. A catalog of damages and examples that illustrate the variety and severity of damage in these bridges are presented. For the bridges considered in the survey, the most common source of damage is water leaking through deck joints. A method for predicting strength loss is applied to a typical bridge in Colorado. It is shown that corrosion initiation occurs more quickly and normalized strength loss is much greater for shear than for flexure. It is also shown that many reinforced concrete bridges under corrosion attack may be more vulnerable to shear than to bending failure. The results can be used to identify critical elements for inspection and repair, and to assist in the development of rational maintenance planning strategies for concrete bridges.  相似文献   

18.
Light gauge metal sheeting is often utilized in the building and bridge industries for concrete formwork. Although the in-plane stiffness and strength of the metal forms are commonly relied upon for stability bracing in buildings, the forms are generally not considered for bracing in steel bridge construction. The primary difference between the forming systems in the two industries is the method of connection between the forms and girders. In bridge construction, an eccentric support angle is incorporated into the connection details to achieve a uniform slab thickness along the girder length. While the eccentric connection is a benefit for slab construction, the flexible connection limits the amount of bracing provided by the forms. This paper presents results from the first phase of a research study investigating the bracing behavior of metal bridge deck forms. Shear diaphragm tests were conducted to determine the shear stiffness and strength of bridge deck forms, and modified connection details were developed that substantially improve the bracing behavior of the forms. The measured stiffness and strength of diaphragms with the modified connection often met or exceeded the values of diaphragms with conventional noneccentric connections. The experimental results for the diaphragms with the modified connection details dramatically improve the potential for bracing of steel bridge girders by metal deck forms.  相似文献   

19.
This paper presents a time-dependent finite-element analysis of a two I-girder composite bridge with a concrete slab. The creep and shrinkage of the concrete slab are considered as sources of time-dependent behavior. This analysis, unlike others, includes the shear-lag effect of the concrete slab on the time-dependent behavior of two I-girder bridges. An example calculation is given for a two-span continuous composite bridge with a cracking region in the concrete deck near the interior support. It is shown that the shear-lag effect becomes significant at the edge of the cracking region and at the bridge ends.  相似文献   

20.
At present, fiber reinforced polymer (FRP) composite materials are extensively used to strengthen concrete structures and a main application is wrapping compression members such as building and bridge columns for improved strength and ductility. In this case, FRP laminates are intended to provide confinement to the concrete and the cross section shape plays an important role on the effectiveness of the method. The primary purpose of this paper is to introduce a test device and a test method designed to determine the effect of corner radius on the strength of the FRP laminate and on the distribution of the resulting radial stress on the substrate material. Various curvatures were investigated. In the proposed device, they can be realized by using interchangeable inserts. Strain distribution around the corner, failure load, and failure mode of the FRP laminate were monitored and analyzed. The stress concentration in the laminate is studied numerically using the finite element method and compared with experimental results. The relationship between radial stress distribution and corner radius is determined to provide guidance in practical cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号