首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Engineering Properties of Lunar Soil Simulant JSC-1A   总被引:1,自引:0,他引:1  
This study was carried out to assess the tensile and shear strength in lunar soil, and to examine the variation as a function of density and confinement. Geotechnical engineering properties of the lunar soil simulant designated Johnson Space Center Number One-A lunar soil simulant (JSC-1A) have been investigated experimentally. To better understand these soil properties, a variety of conventional and unconventional experiments were conducted on JSC-1A to determine its grain-size distribution, cohesion, friction angle, dilatancy angle, tensile strength, and appropriate low strain elastic constants. These experiments were conducted on JSC-1A at a variety of densities prepared through tamping densification to quantify the response of the soil over a range of conditions. To simulate lunar conditions, the samples were prepared at medium to very high relative densities. Grain-size distribution, shear strength, tensile strength, dilatancy angles, and elasticity modulus of the JSC-1A were compared with lunar soil and other simulants.  相似文献   

2.
Geotechnical Properties of JSC-1A Lunar Soil Simulant   总被引:1,自引:0,他引:1  
For the success of planned missions to the moon in the near future, it is essential to have a thorough understanding of the geotechnical behavior of lunar soil. However, only a limited amount of information is available about geotechnical properties of lunar soils. In addition, the amount of lunar soils brought back to Earth is small. To help the development of new regolith moving machines and vehicles that will be used in future missions, a new lunar soil similant JSC-1A has been developed. A group of conventional geotechnical laboratory tests was conducted to characterize the geotechnical properties of the simulant, such as particle size distribution, maximum and minimum bulk densities, compaction characteristics, shear strength parameters, and compressibility.  相似文献   

3.
4.
The morphology (shape and texture) of dust fractions of five Apollo lunar soils and a lunar dust simulant, JSC-1Avf, was studied using scanning electron microscopy. Shape (aspect ratio and complexity) of particles was described based on the two-dimensional projection images. The distributions of aspect ratio and complexity of particles are reported. It was determined that the Apollo lunar dust particles consist mainly of impact-produced glass, with complicated morphologies, extensive surface areas per grain, and sharp, jagged edges. Importantly, many grains contain elaborate vesicular textures, representing minute agglutinates. Dust simulant JSC-1Avf also has similar shapes as lunar dust, but differs in surface texture and area (smooth and nonvesicular). These data provide information for toxicity studies of lunar dust and for selecting a suitable lunar dust simulant.  相似文献   

5.
The particle size distribution (PSD) of lunar dust, the <20?μm portion of the regolith, was determined as an initial step in the study of the possible toxicological effects it may have on the human respiratory and pulmonary systems. Utilizing scanning electron microscopy, PSDs were determined for Apollo 11 (10084) and 17 (70051) dust samples, as well as lunar dust simulant JSC-1Avf. The novel methodology employed is described in detail. All measured PSDs feature a log-normal distribution having a single mode in a range 100–300?nm for lunar dust samples, but the lunar simulant has a mode at ~ 600?nm.  相似文献   

6.
Robotic missions to Mars are listed and significant results of each past mission related to soil engineering are noted. What is known of the Mars environment and surface features that may be of interest to the engineer is summarized. The presumptive engineering properties of soils on the Martian surface are postulated based on expected soil forming mechanisms, the thermal environment found on Mars, and experience from cold region engineering on Earth. The discussion also extends to likely soil characteristics in craters found in the polar regions of the Moon. Experimental results from triaxial testing inert silt (JSC-1 lunar soil simulant) at and near freezing temperatures, with and without water, are also presented. Areas for future investigation and research are suggested.  相似文献   

7.
This paper simulates the three-dimensional axisymmetric triaxial compression of JSC-1A lunar regolith simulant under lunar and terrestrial gravity environments under a wide range of confining pressures and relative densities. To accomplish this, the discrete element method (DEM), using Particle Flow Code In Three-Dimensional (PFC3D) software, was employed. The paper focuses on the peak and the critical state (CS) friction angles, which were predicted in the ranges of 35.4°–82.7° and 31.2°–79.8°, respectively, depending on the specimen density and confining pressure. A significant increase in peak and CS friction angles was predicted at near-zero confining pressure. The DEM results validated an empirical model that relates the peak friction angle with the CS friction angle, relative density, and mean effective stress at the CS. Comparison of DEM results with lunar in situ measurements of friction angle, from Apollo missions and other extraterrestrial laboratory experiments under a microgravity environment, shows a favorable agreement.  相似文献   

8.
The unique properties of lunar regolith make for the extreme coupling of the soil to microwave radiation. Space weathering of lunar regolith has produced myriads of nanophase-sized Fe0 grains set within silicate glass, especially on the surfaces of grains, but also within the abundant agglutinitic glass of the soil. It is possible to melt lunar soil (i.e., 1,200–1,500°C) in minutes in a normal kitchen-type 2.45?GHz microwave, almost as fast as your tea-water is heated. No lunar simulants exist to study these microwave effects; in fact, previous studies of the effects of microwave radiation on lunar simulants, MLS-1 and JSC-1, have been misleading. Using real Apollo 17 soil has demonstrated the uniqueness of the interaction of microwave radiation with the soil. The applications that can be made of the microwave treatment of lunar soil for in situ resource utilization on the Moon are unlimited.  相似文献   

9.
A series of direct shear tests were conducted on the JSC-1A lunar regolith simulant in a 101.6-mm- (4-in.-) diameter container. The direct shear test provides a unique mode of failure that aids the development of excavation tools for the Moon. Relative density and normal load were varied to study the strength behavior of such granular material at peak and critical state conditions. The values of the internal friction angle ranged from 30 to 70°. A relationship between the internal friction angle of the direct shear and the published triaxial compression test results is presented. Additionally, the measured dilatancy angle is related to the difference in peak and critical state stress friction angles.  相似文献   

10.
Future lunar explorations require a thorough understanding of the geotechnical properties of lunar soils. However, the small amount of lunar soil that was brought back to earth cannot satisfy the needs. A new lunar soil simulant, NU-LHT-2M, has been developed to simulate lunar regolith in the lunar highlands region. It is characterized to help the development of regolith-moving machines and vehicles that will be used in future missions to the moon. The simulant’s particle size distribution, specific gravity, maximum and minimum densities, compaction characteristics, shear strength parameters and compressibility have been studied; and the results are compared with the information about lunar regolith provided in the Lunar Sourcebook.  相似文献   

11.
A new lunar highland soil simulant, NAO-1, has been created in National Astronomical Observatories (NAO), Chinese Academy of Sciences. This simulant was produced by gabbro, which includes large quantity of feldspar (An>90). The simulant’s chemical composition, mineralogy, particle-size distribution, density, angle of internal friction, and cohesion have been analyzed and results demonstrated that most characteristics of NAO-1 are similar with lunar highland soil samples. NAO-1 will benefit the scientific and engineering research of lunar soil.  相似文献   

12.
Twelve model tests of chemical explosives (1 g and 0.25 g) of PETN were conducted at 1 g (? = ?6?g [moon]) and 10 g (? = ?60?g [moon]) using the geotechnical centrifuge to determine the effect of chemical explosives on cratering and loosening a compacted lunar simulant prior to excavation. Even small depths of burial of the explosives were found to increase markedly the volume and lip of resulting apparent craters; optimum depths of burial were not pinpointed. Volumes of craters from PETN charges of different weights but equal depths of burial, were related as V? = ?kW084 when charges were fully buried, but not for surface tangent charges. Tests conducted at 1 g and 10 g showed no detectable difference in crater volumes for the depths of burial tested. Constraints to extrapolating the research to the lunar surface (using simulant rather than actual lunar soil; working in earth′s atmosphere rather than in a vacuum; and working at greater than 1 g [moon]) are acknowledged.  相似文献   

13.
Although many experiments have been performed to reduce the lunar soil by hydrogen, no systematic thermodynamic analysis has been developed to design and optimize these experiments. Applying a thermodynamic model to the system of simulant lunar soil and hydrogen, this study analyzes and discusses the thermodynamic behavior of the system in detail. The calculations demonstrate that iron is the only metal that can be extracted significantly from the lunar soil. The amount of hydrogen in the system drastically affects the processes of iron extraction and water production. However, the effect of system pressure can be neglected in the process. The yields of metallic iron and water from the lunar soil as functions of temperature and hydrogen content are investigated in this study. Additionally, the calculations explain the metallic iron on the surface of the moon from the thermodynamic point of view.  相似文献   

14.
This paper describes a procedure used to characterize the three-dimensional (3D) grain shape of lunar soil and undertake simulations of lunar soil by image-based discrete element method (DEM). Given that detailed 3D grain-shape information is unavailable for real lunar soil, a simulant material, FJS-1, is used in this study. We use the high-resolution micro X-ray CT system at SPring-8, a synchrotron radiation facility in Japan, to visualize precise 3D images of the granular assembly of FJS-1. A newly developed image-analysis procedure is then applied to identify individual grains. Using the obtained grain-shape data, a sufficient number of FJS-1 grains are directly modeled for DEM simulation using an efficient modeling scheme. A series of particle flow simulations are then performed with the modeled grains. The resulting slope angles are in good agreement with experimental results. We discuss the effect on the slope angle of grain parameters such as contact stiffness, restitution coefficient, and interparticle friction.  相似文献   

15.
The utilization of explosives for excavation on the lunar surface is under serious consideration as a part of the design for construction of temporary and permanent bases. An excavation research program has shown that small‐scale explosives blasting in a lunar‐soil simulant will greatly reduce the digging forces required for scoop and dragline excavators. Some crater‐blasting parameters were determined for the lunar soil simulant at one Earth gravity and at 10 Earth gravities using a centrifuge. The size of the craters produced at 10 Earth gs matched those formed at one earth g by scaling according to the weight of the explosive. These data can be applied to explosive‐excavation problems such as habitat construction, burial of nuclear power sources, and the rapid construction of shelters remote from the main base to shield against solar‐flare activity.  相似文献   

16.
Determination of Mars soil mechanical properties will improve future lander mission success and provide narrower constraints for geomorphological modeling. A soil mechanics investigation was conducted wherein soil mechanical properties were determined by computer reconstruction of mass wasting features observed in photographs of Mars Exploration Rover landing sites and analysis of natural slope stability. Mars soil mechanical properties were compared with thermal inertia measurements and a correlation is presented. Tests with rovers and equipment for Mars surface exploration and various past laboratory experiments have incorporated a number of different Mars soil simulants. Standard laboratory measurements were conducted to characterize the shear strength, grain size distribution, and densities of various Mars soil simulants. From these measurements, the ability of a given simulant to appropriately represent the mechanical properties of in situ Mars soils was judged. Specific simulants are recommended for certain regions of Mars.  相似文献   

17.
月球矿物资源的原位利用技术是月球基地建立和后续深空探索的基础。由于月球特殊环境及地月运输成本的限制,现有矿冶技术难以直接应用于月球矿物的原位开发。各国的科研人员围绕月球矿物资源原位利用方向开展了卓有成效的研究工作,发展了几种极具应用潜力的技术。这些方法可分为材料化成型和提取冶金两类,其中材料化成型工艺如烧结法、3D增材制造法等,主要用于将月壤直接材料化成型以制备月球基地建材。提取冶金工艺包括碳/氢化学介质还原法、电解还原法以及真空热解法等,可生产月壤矿物对应的金属单质或其低价氧化物,并获得氧气。本文概述了已有月壤原位利用技术的一般原理、基本过程、热力学动力学基础及近期研究进展。探讨了这些方法的一些优缺点,并展望了其在月球矿物原位利用上的应用前景。   相似文献   

18.
Development and study of mechanical properties of engineering materials from locally available materials in space is a vital endeavor toward establishment of bases on the Moon and other planets. The objectives of this study are to create a lunar simulant locally from a basaltic rock, and to design and develop a new vacuum triaxial test device that can permit testing of compacted lunar simulant under cyclic loading with different levels of initial vacuum. Then, triaxial testing is performed in the device itself without removing the compacted specimen; this is achieved by a special mechanism installed within the device. Preliminary constrained compression and triaxial shear tests are performed to identify effects of initial confinements and vacuums. The results are used to define deformation and strength parameters. At this time, vacuum levels up to 10?4 are possible; subsequent research should involve higher vacuum levels, e.g., 10?14?torr as they occur on the Moon. The research can have significant potential toward development of methodology so as to develop compacted materials for various construction applications, and also toward stress‐strain‐strength testing of lunar simulants with different vacuum levels.  相似文献   

19.
Soil plays an important role in the construction of foundations of roads and buildings. The utilization of soil traditionally involves the compaction of the in‐situ or previously loosened material to achieve a desired strength. The paper reports an initial investigation on the effect of the percentage of fines on the densification and strength of lunar‐soil simulant. The results of vibratory and static compaction tests in the laboratory suggest that the amount of fines should be reduced from the existing 50% that is typical for lunar regolith. The measurement of density and cone resistance of soil mix with only 10% showed large differences when compared to soils with 30% or 50% fines. No attempt has been made to find optimal soil mixes for compaction.  相似文献   

20.
A variety of products made from lunar resources will be required for a lunar outpost. These products might be made by adapting existing processing techniques to the lunar environment, or by developing new techniques unique to the moon. In either case, processing techniques used on the moon will have to have a firm basis in basic principles of materials science and engineering, which can be used to understand the relationships between composition, processing, and properties of lunar‐derived materials. These principles can also be used to optimize the properties of a product, once a more detailed knowledge of the lunar regolith is obtained. Using three types of ceramics (monolithic glasses, glass fibers, and glass‐ceramics) produced from lunar simulants, we show that the application of materials science and engineering principles is useful in understanding and optimizing the mechanical properties of ceramics on the moon. We also demonstrate that changes in composition and/or processing can have a significant effect on the strength of these materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号