首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
以Ni、Mo、Ti和B4C粉末为原料,采用氩弧熔覆工艺在Q345D钢基体表面原位合成TiC等颗粒增强金属基复合涂层.借助扫描电镜、X射线衍射仪对熔覆层显微组织进行分析;利用显微硬度计,摩擦磨损试验机对其性能进行分析.试验结果表明:熔覆层与基体呈冶金结合,熔覆层无裂纹、无气孔;原位合成的增强相弥散分布于熔覆层中,使熔覆层具有较高的硬度,最高硬度为1469 HV.随着颗粒的消失,基体硬度为202 HV,熔覆层最高硬度值是基体硬度值的7倍多.在室温干滑动磨损试验条件下,熔覆层具有优异的耐磨性能,其耐磨性约为基体的15倍.  相似文献   

2.
采用HL-5000型横流CO2 激光加工机,在TC4钛合金表面制备了表面平整、细密、消除了裂纹与孔隙的TiC复合涂层.通过SEM、EDAX、XRD、HXD-1000TMC型显微硬度计和HT-600型高温摩擦磨损试验机,分析了熔覆层的显微组织、成分、物相,测试了激光熔覆层的显微硬度和滑动摩擦磨损性能.结果表明,激光熔覆制备的TiC复合涂层与基体呈冶金结合,涂层中有大量小块状、针状TiC颗粒和TiC树枝晶,熔覆层的显微硬度达880~ 1087 HV0.1,耐磨性能比TC4钛合金显著提高.  相似文献   

3.
利用6 kW光纤激光器在Cr12MoV汽车模具钢表面激光熔覆含有Ti-Fe,B4C粉末的铁基合金粉,在汽车模具钢表面直接原位合成TiC+TiB2颗粒增强的铁基合金复合涂层.涂层与基体呈良好的冶金结合,涂层组织细小,结构致密,宏观质量较好. XRD分析结果表明,涂层组织由α-Fe,TiC,TiB2组成. TiC,TiB2相均匀分布于熔覆层中.由于TiC,TiB2硬质相的形成以及激光的快速凝固冷却获得的细晶组织,使得熔覆层的显微维氏硬度有了明显提高.在距离熔覆层表面1.2 mm处显微维氏硬度高达1000 HV,有利于促进熔覆层耐磨性的提高.  相似文献   

4.
TC4钛合金表面激光熔覆复合涂层的组织和耐磨性   总被引:1,自引:0,他引:1  
采用5 kW横流CO2激光器,在TC4钛合金表面熔覆TiC、TiB2与Ni的混合粉末,制备了无气孔、无裂纹、组织均匀致密的复合涂层。用SEM、EDS、XRD、显微硬度计以及立式万能摩擦磨损试验机分析了激光熔覆层的显微组织、成分和物相,测试了激光熔覆层横截面显微硬度,以及覆层耐磨性能。结果表明,激光熔覆复合涂层与基体呈冶金结合;熔覆层组织从表层到结合区呈现出由棒状、块状向树枝状、颗粒状转变的趋势,且主要由Ti、TiC、TiB、Ti2Ni、TiNi等相组成;熔覆层显微硬度最高可达863 HV0.2,为基体的2.5倍;熔覆层耐磨性能较TC4钛合金明显提高。  相似文献   

5.
在45钢表面激光熔覆原位合成TiC颗粒增强Fe基复合涂层。利用扫描电镜、能谱仪和X射线衍射仪对TiC/Fe复合涂层的显微组织、合金成分以及物相进行分析,测试了熔覆层的显微硬度和耐磨性能。结果表明,当(Ti+C)的含量在复合粉末中的比例达到15%时,熔覆层生成了少量的TiC颗粒,其形状呈多面体和花瓣状,直径为1~5μm,长度为3~5μm,TiC增强相组织中含有Fe、Cr等元素,而不是单纯的二元碳化物。由于少量TiC颗粒的团聚现象,造成TiC激光熔覆层的显微硬度低于Fe基熔覆层,但TiC激光熔覆层磨损性能优于Fe基熔覆层。  相似文献   

6.
在Ti6Al4V合金表面预置Ti和Cr3C2混合粉末,采用横流CO2激光进行熔覆试验,制备出了原位自生的TiC颗粒增强的钛基复合涂层.利用SEM、XRD等手段对激光熔覆层的组织、成分、物相进行了分析,测试了激光熔覆层的显微硬度.结果表明,熔覆层不同位置,组织形态不同,TiC在熔覆层表层以树枝晶形态存在,而在熔覆层底部为近球状颗粒.熔覆层与基材之间形成良好的冶金结合.熔覆层显微硬度在600~800 HV0.5之间,约为基材硬度的2~3倍.  相似文献   

7.
为提高H13模具钢的耐磨性能,利用激光熔覆技术,在H13钢表面制备了不同Ti C含量的Ti C/Ni基合金复合涂层,通过显微组织观察、硬度测试、滑动摩擦磨损试验方法对H13钢表面激光熔覆的不同复合涂层的组织及耐磨性能进行分析测试。结果表明,Ni60+Ti C激光熔覆涂层中物相主要为γ-(Fe,Ni)、Fe3C、Cr23C6、Ni2Si及Ti C,激光熔覆层具有较高显微硬度,Ti C的加入及含量增加可使熔覆层组织细化,复合熔覆层硬度提高,Ti C含量为30%时熔覆层内平均硬度最大,为873 HV0.2;激光熔覆Ti C+Ni60复合涂层的耐磨性显著高于H13钢基体,随Ti C含量增加而先增加后降低,Ti C含量20%耐磨性较佳;H13钢基体的磨损机制主要以犁削、切削为主,激光熔覆Ti C/Ni合金复合涂层以脆性剥落机制为主。  相似文献   

8.
为提高H13模具钢的耐磨性能,利用激光熔覆技术,在H13钢表面制备了不同Ti C含量的Ti C/Ni基合金复合涂层,通过显微组织观察、硬度测试、滑动摩擦磨损试验方法对H13钢表面激光熔覆的不同复合涂层的组织及耐磨性能进行分析测试。结果表明,Ni60+Ti C激光熔覆涂层中物相主要为γ-(Fe,Ni)、Fe3C、Cr23C6、Ni2Si及Ti C,激光熔覆层具有较高显微硬度,Ti C的加入及含量增加可使熔覆层组织细化,复合熔覆层硬度提高,Ti C含量为30%时熔覆层内平均硬度最大,为873 HV0.2;激光熔覆Ti C+Ni60复合涂层的耐磨性显著高于H13钢基体,随Ti C含量增加而先增加后降低,Ti C含量20%耐磨性较佳;H13钢基体的磨损机制主要以犁削、切削为主,激光熔覆Ti C/Ni合金复合涂层以脆性剥落机制为主。  相似文献   

9.
目的 通过氩弧熔覆技术在TC4合金表面制备石墨烯增强钛基复合涂层,以改善其耐磨性能.方法 将钛粉和石墨烯在球磨机中充分混合.将混合后的粉末涂覆于TC4合金表面,采用氩弧熔覆技术将预涂覆粉末熔化,制备出陶瓷颗粒增强钛基熔覆层.采用X射线衍射分析仪分析涂层的物相,利用光学显微镜、扫描电子显微镜分析熔覆层中颗粒相的组成及分布.采用显微维氏硬度仪和摩擦磨损试验机,测试熔覆层的显微硬度和磨损性能.结果 熔覆层厚度可达1 mm,且表面及横截面没有气孔、裂纹等缺陷产生,物相主要包括TiC和 α-Ti.熔覆层中不同区域的组织存在差别,涂层的中上部组织主要为树枝晶,底部组织中树枝晶逐渐减少.熔覆层与基体呈冶金结合,组织致密.增强相TiC以颗粒状和花瓣状形式存在.石墨烯增强钛基复合涂层的显微硬度高达845.4HV.在相同磨损条件下,TC4合金基体与熔覆层的磨损量分别是0.153 g和0.0123 g,熔覆层的磨损量明显降低.涂层的磨损机制主要是磨粒磨损.结论 与TC4合金基体对比,熔覆层的显微硬度提高约2.5倍,耐磨性提高12倍.氩弧熔覆原位自生TiC陶瓷颗粒增强钛基熔覆层可显著提高TC4合金表面的耐磨性.  相似文献   

10.
利用氩弧熔覆技术,以Ni60自熔合金粉、钛粉和石墨粉为原料,在45#钢表面原位反应合成了以TiC颗粒为增强相的Ni基复合涂层。利用金相、SEM、XRD等技术分析了涂层的显微组织,利用显微硬度仪测试了熔覆层显微硬度,用自制磨损试验机对比了熔覆层与淬火回火65Mn钢的耐磨性。结果表明,熔覆层成形良好,无裂纹、气孔等缺陷,与基体呈冶金结合;熔覆层的组织为γ—Ni奥氏体枝晶、CrB、TiB2、Cr23C6、Fe23C6及反应合成的弥散分布的球状TiC陶瓷颗粒;熔覆层显微硬度呈梯度分布,且越靠近基体表面,硬度越低;熔覆层具有优良的耐磨性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号