首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composites in the SiC–TiC–Ti3SiC2 system were synthesized using reactive hot pressing at 1600°C. The results indicate that addition of Ti3SiC2 to SiC leads to improved fracture toughness. In addition, high microhardness can be retained if TiC is added to the material. The best combination of properties obtained in this study is K I c =8.3 MPa·m1/2 and H v=17.6 GPa. The composition can be tailored in situ using the decomposition of Ti3SiC2. Ti3SiC2 decomposed rapidly at temperatures above 1800°C, but the decomposition could be conducted in a controlled manner at 1750°C. This can be used for synthesis of fully dense composites with improved properties by first consolidating to full density a softer Ti3SiC2-rich initial composition, and then using controlled decomposition of Ti3SiC2 to achieve the desired combination of microhardness and fracture toughness.  相似文献   

2.
Ti/Si/2TiC powders were prepared using a mixture method (M) and a mechanical alloying (MA) method to fabricate Ti3SiC2 at 1200°–1400°C using a pulse discharge sintering (PDS) technique. The results showed that the Ti3SiC2 samples with <5 wt% TiC could be rapidly synthesized from the M powders; however, the TiC content was always >18 wt% in the MA samples. Further sintering of the M powder showed that the purity of Ti3SiC2 could be improved to >97 wt% at 1250°–1300°C, which is ∼200°–300°C lower than that of sintered Ti/Si/C and Ti/SiC/C powders using the hot isostatic pressing (HIPing) technique. The microstructure of Ti3SiC2 also could be controlled using three types of powders, i.e., fine, coarse, or duplex-grained, within the sintering temperature range. In comparison with Ti/Si/C and Ti/SiC/C mixture powders, it has been suggested that high-purity Ti3SiC2 could be rapidly synthesized by sintering the Ti/Si/TiC powder mixture at relatively lower temperature using the PDS technique.  相似文献   

3.
Nanolaminates with a layered M N +1AX N crystal structure (with M: transition metal, A: group element, X: carbon or nitrogen, and N =1, 2, 3) offer great potential to toughen ceramic composites. A ternary Ti3AlC2 carbide containing ceramic composite was fabricated by three-dimensional printing of a TiC+TiO2 powder mixture and dextrin as a binder. Subsequent pressureless infiltration of the porous ceramic preform with an Al melt at 800°–1400°C in an inert atmosphere, followed by reaction of Al with TiC and TiO2 finally resulted in the formation of a dense multiphase composite of Ti3AlC2–TiAl3–Al2O3. A controlled flaw/strength technique was utilized to determine fracture resistance as a function of crack extension. Rising R -curve behavior with increasing crack extension was observed, confirming the operation of wake-toughening effects on the crack growth resistance. Observations of crack/microstructure interactions revealed that extensive crack deflection along the (0001) lamellar sheets of Ti3AlC2 was the mechanism responsible for the rising R -curve behavior.  相似文献   

4.
The phase domain of Ti3O5–Ti2O3–Ti(CO) at 1580 K was determined from the formation energies of Ti(C x O y ), as calculated via the Gibbs–Duhem equation. An extensive Ti(CO) domain is attributed to the high affinity between TiC and TiO. The phase domain of Ti3O5–Ti2O3–Ti(CN) was obtained at 1673 K using the formation energies of Ti(C x N y ). This study shows that the stable region for Ti2O3 is significantly small in the Ti3O5–Ti2O3–Ti(CN) phase domain. It demonstrates the absence of TiO and Ti2O3 in the normal syntheses of TiC and Ti(CN) from TiO2, respectively.  相似文献   

5.
Titanium silicon carbide (Ti3SiC2) and Ti3SiC2-based composite powders were synthesized by isothermal treatment in an inert atmosphere as a function of initial compositions (mixtures). A high content of TiC was obtained in the final product when the initial mixtures contained free carbon. The use of TiC as a reagent was unsuccessful in obtaining Ti3SiC2. High Ti3SiC2 conversion was found for the initial mixtures containing SiC as the main source for silicon and carbon. An initial mixture with a large excess of silicon, 3Ti/1.5SiC/0.5C, was needed to obtain high-purity Ti3SiC2. A reaction mechanism, where Ti3SiC2 nucleates on Ti5Si3C crystals and grows by long-range diffusion of Ti and C, is proposed. The reaction mechanism was proposed to be based on silicon loss during the formation of Ti3SiC2.  相似文献   

6.
To evaluate the lubrication compatibility of SiC-reinforced Ti3SiC2-based composites, i.e., a Ti3SiC2/SiC composite, with water and alcohol, sliding experiments were conducted under dry condition and lubricated with water and C2H5OH. The friction and wear of the Ti3SiC2/SiC composite decreased in the order of dry condition, in water, and in C2H5OH. The worn surfaces indicated that oxide masses, which caused oxidation wear and abrasive wear, were formed by tribo-oxidation on the sliding surface under the dry condition and in water, while tribo-oxidation scarcely occurred in C2H5OH.  相似文献   

7.
The effect of vacuum annealing on the thermal stability and phase transition of Ti3SiC2 has been investigated by X-ray diffraction (XRD), neutron diffraction, synchrotron radiation diffraction, and secondary ion mass spectroscopy (SIMS). In the presence of vacuum or a controlled atmosphere of low oxygen partial pressure, Ti3SiC2 undergoes a surface dissociation to form nonstoichiometric TiC and/or Ti5Si3C x that commences at ∼1200°C and becomes very pronounced at ≥1500°C. Composition depth profiling at the near surface of vacuum-annealed Ti3SiC2 by XRD and SIMS revealed a distinct gradation in the phase distribution of TiC and Ti5Si3C x with depth.  相似文献   

8.
The reactive sintering of 3Ti/SiC/C to form the layered ternary carbide Ti3SiC2 was studied in situ by time-resolved neutron powder diffraction. A number of intermediate processes occur during the synthesis beginning with the α-β transition in Ti. Concurrent with the α-β transition, two intermediate phases, TiC x and Ti5Si3C x ( x ≤ 1), form. These phases account for almost the entire sample in the range 1500–1600°C beyond which they react with each other and a small amount of free C to form the product phase Ti3SiC2.  相似文献   

9.
The cyclic fatigue and fracture toughness behavior of reactive hot-pressed Ti3SiC2 ceramics was examined at temperatures from ambient to 1200°C with the objective of characterizing the high-temperature mechanisms controlling crack growth. Comparisons were made of two monolithic Ti3SiC2 materials with fine- (3–10 μm) and coarse-grained (70–300 μm) microstructures. Results indicate that fracture toughness values, derived from rising resistance-curve behavior, were significantly higher in the coarser-grained microstructure at both low and high temperatures; comparative behavior was seen under cyclic fatigue loading. In each microstructure, Δ K th fatigue thresholds were found to be essentially unchanged between 25° and 1100°C; however, there was a sharp decrease in Δ K th at 1200°C (above the plastic-to-brittle transition temperature), where significant high-temperature deformation and damage are first apparent. The substantially higher cyclic-crack growth resistance of the coarse-grained Ti3SiC2 microstructure was associated with extensive crack bridging behind the crack tip and a consequent tortuous crack path. The crack-tip shielding was found to result from both the bridging of entire grains and from deformation kinking and bridging of microlamellae within grains, the latter forming by delamination along the basal planes.  相似文献   

10.
The 1100°C isothermal section and the isopleths at 5, 10, and 15 at.% C in the Ti–Si–C system were determined by DTA and XRD methods. Five invariant reactions (L (liquid) = Si + SiC + TiSi2 at 1330°C, L = TiSi + TiSi2+ Ti5Si3C x at 1485°C, L + Ti5Si3C x = Ti3SiC2+ TiSi2 at 1485°C, L + Ti3SiC2= TiSi2+ SiC at 1473°C, and L + TiC = bcc-(Ti) + Ti5Si3C x at 1341°C) were observed. The transition temperature for L + TiC = Ti3SiC2+ SiC was measured by the Pirani technique. Optimized thermodynamic parameters for the Ti–Si–C system were then obtained by means of the CALPHAD (calculation of phase diagrams) method applied to the present experimental results and reliable literature data. The calculations satisfactorily account for most of the experimental data.  相似文献   

11.
In this article, the first part of a two-part study, we report the reaction path and microstructure evolution during the reactive hot isostatic pressing of Ti3SiC2, starting with titanium, SiC, and graphite powders. A series of interrupted hot isostatic press runs have been conducted as a function of temperature (1200°–1600°C) and time (0–24 h). Based on X-ray diffractometry and scanning electron microscopy, at 1200°C, the intermediate phases are TiC x and Ti5Si3C x . Fully dense, essentially single-phase samples are fabricated in the 1450°–1700°C temperature range. The time-temperature processing envelope for fabricating microstructures with small (3–5 μm), large (∼200 μm), and duplex grains, in which large (100–200 μm) Ti3SiC2 grains are embedded in a much finer matrix, is delineated. The microstructure evolution is, to a large extent, determined by (i) the presence of unreacted phases, mainly TiC x , which inhibits grain growth; (ii) a large anisotropy in growth rates along the c and a directions (at 1450°C, growth normal to the basal planes is about an order of magnitude smaller than that parallel to these planes; at 1600°C, the ratio is 4); and (iii) the impingement of grains. Ti3SiC2 is thermally stable under vacuum and argon atmosphere at temperatures as high as 1600°C for as long as 24 h. The influence of grain size on the mechanical properties is discussed in the second part of this study.  相似文献   

12.
Polycrystalline bulk samples of Ti3SiC2 were fabricated by reactively hot-pressing Ti, graphite, and SiC powders at 40 MPa and 1600°C for 4 h. This compound has remarkable properties. Its compressive strength, measured at room temperature, was 600 MPa, and dropped to 260 MPa at 1300°C in air. Although the room-temperature failure was brittle, the high-temperature load-displacement curve shows significant plastic behavior. The oxidation is parabolic and at 1000° and 1400°C the parabolic rate constants were, respectively, 2 × 10−8 and 2 × 10−5 kg2-m−4.s−1. The activation energy for oxidation is thus =300 kJ/mol. The room-temperature electrical conductivity is 4.5 × 106Ω−1.m−1, roughly twice that of pure Ti. The thermal expansion coefficient in the temperature range 25° to 1000°C, the room-temperature thermal conductivity, and the heat capacity are respectively, 10 × 10−6°C−1, 43 W/(m.K), and 588 J/(kgK). With a hardness of 4 GPa and a Young's modulus of 320 GPa, it is relatively soft, but reasonably stiff. Furthermore, Ti3SiC2 does not appear to be susceptible to thermal shock; quenching from 1400°C into water does not affect the postquench bend strength. As significantly, this compound is as readily machinable as graphite. Scanning electron microscopy of polished and fractured surfaces leaves little doubt as to its layered nature.  相似文献   

13.
Isothermal oxidation of dense TiC ceramics, fabricated by hot-isostatic pressing at 1630°C and 195 MPa, was performed in Ar/O2 (dry oxidation), Ar/O2/H2O (wet oxidation), and Ar/H2O (H2O oxidation) at 900°–1200°C. The weight change measurements of the TiC specimen showed that the dry, wet, and H2O oxidation at 850°–1000°C is represented by a one-dimensional parabolic rate equation, while the oxidation in the three atmospheres at 1100° and 1200°C proceeds linearly. Cross-sectional observation showed that the dry oxidation produces a lamellar TiO2 scale consisting of many thin layers, about 5 μm thick, containing many pores and large cracks, while H2O-containing oxidation decreases pores in number and diminishes cracks in scales. Gas evolution of CO2 and H2 with weight change measurement was simultaneously followed by heating the TiC to 1400°C in the three atmospheres. Cracking in the TiO2 scale accompanied CO2 evolution, and the H2O-containing oxidation produced a small amount of H2. A piece of single crystal TiC was oxidized in 16O2/H218O to reveal the contribution of O from H2O to the oxidation of TiC by secondary ion mass spectrometry.  相似文献   

14.
The effect of Si3N4, Ta5Si3, and TaSi2 additions on the oxidation behavior of ZrB2 was characterized at 1200°–1500°C and compared with both ZrB2 and ZrB2/SiC. Significantly improved oxidation resistance of all Si-containing compositions relative to ZrB2 was a result of the formation of a protective layer of borosilicate glass during exposure to the oxidizing environment. Oxidation resistance of the Si3N4-modified ceramics increased with increasing Si3N4 content and was further improved by the addition of Cr and Ta diborides. Chromium and tantalum oxides induced phase separation in the borosilicate glass, which lead to an increase in liquidus temperature and viscosity and to a decrease in oxygen diffusivity and of boria evaporation from the glass. All tantalum silicide-containing compositions demonstrated phase separation in the borosilicate glass and higher oxidation resistance than pure ZrB2, with the effect increasing with temperature. The most oxidation-resistant ceramics contained 15 vol% Ta5Si3, 30 vol% TaSi2, 35 vol% Si3N4, or 20 vol% Si3N4 with 10 mol% CrB2. These materials exceeded the oxidation resistance of the ZrB2/SiC ceramics below 1300°–1400°C. However, the ZrB2/SiC ceramics showed slightly superior oxidation resistance at 1500°C.  相似文献   

15.
A porous ceramic preform was fabricated by printing a powder blend of TiC, TiO2, and dextrin. The presintered preforms contained a bimodal pore size distribution with intra-agglomerate pores ( d 50≈0.7 μm) and inter-agglomerate pores ( d 50≈30 μm), which were subsequently infiltrated by aluminum melt spontaneously in argon above 1050°C. A redox reaction at 1400°C resulted in the formation of dense Ti–Al–O–C composites mainly composed of Ti3AlC2, TiAl3, Al, and Al2O3, which attained a bending strength of 320 MPa, a Young's modulus of 184 GPa, and a Vicker's hardness of 2.5 GPa.  相似文献   

16.
A near-single-phase Ti3AlC2 ternary carbide was synthesized from 3Ti–1.1Al–1.8C powder blend, both by the wave propagation and thermal explosion (TE) modes of self-propagating high-temperature synthesis. The application of a moderate (28 MPa) pressure immediately after TE at 800°C (reactive forging) yielded a 95% dense material containing, in addition to Ti3AlC2, an appreciable amount of TiC1− x . By adjusting the starting composition, a 99% dense material containing up to 90 vol.% Ti3AlC2 was obtained. The material had a fine-layered microstructure with Ti3AlC2 grain size not exceeding 10 μm. The samples were readily machinable and had a high compressive strength of ∼800 MPa up to 700°C.  相似文献   

17.
It is demonstrated that the M n +1AX n phase Ti3AlC2 may be readily synthesized by sintering a stoichiometric mixture of the lower order MAX phase Ti2AlC mixed with a stoichiometric amount of TiC in the temperature range 1350°–1450 °C. High-quality Ti3AlC2 was readily produced using sintering times in the range 2–5 h. In general, <2% of unwanted or remnant phases were found to be present and in some samples none could be detected at all.  相似文献   

18.
The quenching technique was used to study subliquidus and subsolidus phase relations in the pseudobinary system Na2 Ti2Si2 O11-Na2 Ti2 Si2 O9. Both narsarukite (Na2TiSi4O11) and lorenzenite (Na2Ti2Si2O9) melt incongruently. Narsarsukite melts at 911°±°C to SiO2+liquid, with the liquidus at 1016°C. Lorenzenite melts at 910°±5°C to Na2 Ti6 O13+liquid; Na2 Ti6 O13 reacts with liquid to form TiO2 and is thus consumed by 985°±5°C. The liquidus occurs at 1252°C.  相似文献   

19.
In this study we used solid-state synthesis to determine the phase relations in the pyrochlore-rich part of the Bi2O3−TiO2−Nd2O3 system at 1100°C. The samples were analyzed using X-ray powder diffraction and scanning electron microscopy with energy- and wavelength-dispersive spectroscopy. A single-phase pyrochlore ceramic was obtained with the addition of 4.5 mol% of Nd2O3. We determined the solubility limits for the three solid solutions: (i) the pyrochlore solid solution Bi(1.6–1.08 x )Nd x Ti2O(6.4+0.3 x ), where 0.25< x <0.96; (ii) the solid solution Bi4− x Nd x Ti3O12, where 0< x <2.6; and (iii) the Nd2− x Bi x Ti2O7 solid solution, where 0< x <0.35. The determined phase relations in the pyrochlore-rich part are presented in a partial phase diagram of the Bi2O3−TiO2−Nd2O3 system in air at 1100°C.  相似文献   

20.
In situ neutron diffraction at 0.9 s time resolution was used to reveal the reaction mechanism during the self-propagating high-temperature synthesis (SHS) of Ti3SiC2 from furnace-ignited stoichiometric 3Ti + SiC + C mixtures. The diffraction patterns indicate that the SHS proceeded in five stages: (i) preheating of the reactants, (ii) the α→β phase transformation in Ti, (iii) preignition reactions, (iv) the formation of a single solid intermediate phase in <0.9 s, and (v) the rapid nucleation and growth of the product phase Ti3SiC2. No amorphous contribution to the diffraction patterns from a liquid phase was detected and, as such, it is unlikely that a liquid phase plays a major role in this SHS reaction. The intermediate phase is believed to be a solid solution of Si in TiC such that the overall stoichiometry is ∼3Ti:1Si:2C. Lattice parameters and known thermal expansion data were used to estimate the ignition temperature at 923 ± 10°C (supported by the α→β phase transformation in Ti) and the combustion temperature at 2320 ± 50°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号