首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Abstract

For fabrication of aluminium borate whisker (Al18B4O33(w)) reinforced 6061 aluminium alloy composites, a sol–gel alumina binder instead of conventional silica binder was used for preparing the whisker preforms of the squeeze cast composites. The results show that a sound whisker preform and a uniform composite can be made by this method. Unlike the reactive silica binder, the sol–gel alumina binder is rather stable throughout the entire high temperature fabrication process. Under appropriate conditions, the sol–gel alumina binder can also serve as a thermal barrier for minimising interfacial reactions between aluminium borate whiskers and the matrix alloy. With a binder concentration of 0.6 mol L-1, the ultimate tensile strength of the composite is as high as 277.6 MPa at room temperature and moderate at elevated temperatures. The tensile fracture of the alumina bound composite shows a mixed mode of dimple fracture and interface debonding.  相似文献   

2.
Abstract

Aluminium alloy 6061, AC8A, Al–1Mg, Al–9Cu and pure aluminium composites reinforced with aluminium borate whiskers were fabricated by a squeeze casting process. The interfacial reaction in the composites and its effect on the bending strength are discussed, together with the results from SEM, TEM, and X-ray diffraction. A slight interfacial reaction is favourable for composite strength as it has the effect of anchoring the whiskers. A T6 treatment can enhance the strength of an Al–9Cu matrix composite, but is not efficient for magnesium containing 6061 and AC8A matrix composites. Furthermore, if heated at temperatures higher than 793 K for a long time, the composite strength drops rapidly owing to whisker damage and shortening during the interfacial reaction. It is suggested that the interface in an Al18 B4O33 /Al alloy composite is stable below 623 K which is the temperature requirement for automobile engine components.  相似文献   

3.
Deformation and microstructural behaviours of a 20% (volume percent) particle reinforced 6061 Al matrix composite have been studied by torsion from 25 to 540°C with strain rates of 0.1, 1 and 5 s−1. The logarithmic stress versus reciprocal temperature relationship exhibits two slopes indicating different deformation mechanisms. The 20% Al2O3/6061 Al composite shows a greater hardening behaviour than those of the 10% Al2O3/6061 Al composite and of the monolithic alloy. Above 250°C, TEM investigations reveal much smaller subgrain size and higher volume of non-cellular substructures, as well as dynamic recrystallization nuclei in the 20% Al2O3/6061 Al composite in comparison to those of the 10% Al2O3/6061 Al composite and matrix alloy the same test condition. The torsion fracture surface was studied and compared to the three point bending failure specimens.  相似文献   

4.
The tensile properties and microstructures of AA6061/Al2O3p composites fabricated by the pressureless infiltration method under a nitrogen atmosphere were examined. Since the spontaneous infiltration of molten metal into elemental powders bed as well as alloy powders bed occurred at 700°C for 1 hour under a nitrogen atmosphere, it was possible to fabricate 6061 Al matrix composite reinforced with Al2O3p irrespective of the type of metal powders. Both MgAl2O4 and MgO were formed at interfaces between Al2O3 and the matrix. In addition, MgAl2O4 was formed at within the matrix by in situ reaction during composite fabrication. Fine AlN was formed by in situ reaction in both composites. A significant strengthening in the composites occurred due to the formation ofin situ AlN particle and addition of Al2O3 particles, as compared to the commercial alloy, while tensile properties in the both elemental and alloy powders composites showed similar trend.  相似文献   

5.
A pure aluminum composite reinforced by Al18B4O33 whiskers was fabricated by a squeeze casting technique. In the present study, it is found that the dependence of tensile plasticity on temperature in Al18B4O33 whiskers reinforced aluminum composite is different from other discontinuously reinforced aluminum composites. The tensile elongation to fracture of the composite obtains its maximum value at about 573 K, which is considered to be related to the equicohesive temperature of interface and matrix. This will also establish a basis for the research of hot forming process of the composite at elevated temperatures.  相似文献   

6.
Deformation and microstructural behaviours of a 20% (volumepercent) particle reinforced 6061 Al matrix composite have been studied bytorsion from 25 to 540°C with strain rates of 0.1, 1 and5 s-1. The logarithmic stress versus reciprocal temperaturerelationship exhibits two slopes indicating different deformationmechanisms. The 20% Al2O3/6061 Alcomposite shows a greater hardening behaviour than those of the 10% Al2O3/6061 Al composite and of the monolithic alloy. Above 250°C, TEM investigations reveal muchsmaller subgrain size and higher volume of non-cellular substructures, aswell as dynamic recrystallization nuclei in the 20% Al2O3/6061 Al composite in comparison to those of the10% Al2O3/6061 Al composite and matrixalloy the same test condition. The torsion fracture surface was studied andcompared to the three point bending failure specimens.  相似文献   

7.
Nano ceramic particle reinforced composite coatings were created by incorporating Al2O3 ceramic particles into the surface of AA6061-T6 alloy plate with multiple pass friction stir processing (FSP). Optical microscopy and Micro-Vickers hardness tests were employed to investigate the influence of axial force and the number of FSP pass on the distribution of the ceramic particles and the hardness of the generated nano ceramic particle reinforced composite coating. Results show that the composite coating is as deep as the length of the pin probe. No distinct interface was developed between the coating and the base metal. The composite region becomes greater as the axial force and the number of FSP pass increased. At the same time, the distribution of the ceramic particles became more homogeneous. Nano particles in the coating have no significant effect on the macro-hardness of AA6061-T6 aluminum alloy even in the composite zone due to the softening of matrix material resulted from overaging. Spindle torque of the tool increased with increasing axial force, while it became less variable and smaller in subsequent pass compared to that in the first pass.  相似文献   

8.
Aluminum matrix composite reinforced by in situ generated single crystalline MgAl2O4 whiskers was fabricated by chemical synthesis method in an Al-Mg-H3BO3 system. A large number of MgAl2O4 whiskers were generated during the sintering process and distributed homogeneously in the Al matrix. The whiskers penetrate into the matrix grains to form the framework of the materials, leading to an incredible increase in mechanical properties of the composites. The generation mechanism of the MgAl2O4 whiskers was also discussed.  相似文献   

9.
Aluminium alloy based Metal Matrix Composites (MMCs), reinforced with ceramic particles such as Al2O3 or SiC, have a number of advantages over conventional aluminium alloys, primarily enhanced stiffness and increased wear resistance. In order to improve the fields of application, fundamental understanding of the relationship between microstructural features and mechanical properties is however required. In this work, the tensile behaviour of two composites based on 6061 and 7005 aluminium alloys, reinforced with Al2O3 particles, at room temperature, at 100°C and at 150°C was studied. The ductility of the composites was found to be much lower than that of the unreinforced alloys, while a significative increase of the elastic modulus and tensile strength was found. Both materials showed a slight decrease of the tensile strength with temperature, while elongation increased. Large particles and clusters of the reinforcement were found to be locations prone to failure in the composite, due to the high stress concentrations, mainly at room temperature. With increasing temperature, the fracture surfaces showed a dimpled appearance with a large amount of plastic deformation of the matrix, indicating that void nucleation, growth and coalescence is the main fracture mechanism.  相似文献   

10.
Tensile tests were carried out at room temperature on 6061-aluminium alloy reinforced with SiC and Al2O3 particulates. Although a significant increase in strength could be achieved by introducing ceramic reinforcements into the aluminium alloy matrix, it is associated with a substantial decrease in fracture strain. In order to understand the reason for the inferior ductility of such composites, analytical solutions were obtained using a simple composite model. SEM studies were carried out on the side surfaces of the fractured specimens to verify the proposed failure behaviour. Failure modes observed to operate in such composites under uniaxial tension are described.  相似文献   

11.
We present a way to fabricate the NiCu/Al2O3/nano-carbon network (NCN) composite electrode by coelectrodepositing NiCu particles, using a novel conductive alumina/NCN composite material as the support. The morphology, crystalline phases, and compositions are characterized by field-emission scanning electron microscope, energy dispersive X-ray spectroscope, X-ray diffraction, and Raman spectroscopy. The electrocatalytic behaviors of this NiCu/Al2O3/NCN composite material for hydrogen evolution reaction (HER) in alkaline solution are studied by cathodic polarization curves, electrochemical impedance spectroscopy (EIS), and chronoamperometry. The results show that nickel–copper particles are briefly deposited and uniformly distributed over the carbon layer of the conductive ceramics between alumina grains, in the form of a NiCu solid solution with face-centered cubic structure. The NiCu/Al2O3/NCN composite displays a high electrochemical stability in alkaline solution and relatively high electrocatalytic activity for HER due to its relatively high real surface area and high intrinsic electrocatalytic effect of NiCu alloy particles. The associated kinetic parameters of HER are systematically investigated using EIS.  相似文献   

12.
The cyclic stress response characteristics and cyclic fracture behavior of aluminum alloy 6061 discontinuously reinforced with particulates of Al2O3 are presented and discussed. The 6061/Al2O3 composite specimens and the unreinforced 6061 aluminum alloy were cyclically deformed using tension-compression loading under constant total strain amplitude control. Both the composite and the unreinforced alloy exhibited softening to failure from the onset of cyclic deformation. The degree of softening was observed to increase at the elevated test temperature for both the composite and the unreinforced counterpart. The intrisic micromechanisms controlling the stress response characteristics during fully-reversed cyclic straining are highlighted and rationale for the observed behavior is discussed. The cyclic fracture behavior of the composite is discussed in terms of the competing influences of intrinsic microstructural effects, deformation characteristics arising from a combination of mechanical and microstructural contributions, cyclic stress response, and test temperature.  相似文献   

13.
In this study, zinc?aluminum alloy (ZA-27) matrix composites reinforced by different weight fractions of fly ash or alumina (Al2O3) were produced using the traditional stir casting technique. The corrosion behaviors of both unreinforced alloy and reinforced composites were examined using direct current polarization (DCP) test in a simulated sea solution (3.5 wt.% NaCl). Scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) were used to examine the morphology of the composites’ surface before and after corrosion tests. The results of corrosion revealed that reinforcing ZA-27 alloy by fly ash or Al2O3 particles decreases its tendency to uniform corrosion due to the formation of weak microgalvanic couple between matrix and reinforcement particles. The fly ash and alumina (Al2O3) particles have protected the matrix material from pits formation at early stage of polarization. However, once these pits are formed, they grow faster. Positive hysteresis of the polarization curves implies that the salt layer breakdown and matrix dissolution overshadow surface passivation during the reverse scan. The electrochemical results are consistent with the pits’ morphology of the corroded composite. Composites with fly ash reinforcements have autocatalytic pits, whereas composites with alumina (Al2O3) reinforcements have shallow pits.  相似文献   

14.
The mechanical properties of metal matrix composites (MMCs) are critical to their potential application as structural materials. A systematic examination of the effect of particulate volume fraction on the mechanical properties of an Al2O3-Al MMC has been undertaken. The material used was a powder metallurgy processed AA 6061 matrix alloy reinforced with MICRAL-20, a polycrystalline microsphere reinforcement consisting of a mixture of alumina and mullite. The volume fraction of the reinforcement was varied systematically from 5 to 30% in 5% intervals. The powder metallurgy composites were extruded then heat treated to the T6 condition. Extruded liquid metallurgy processed AA 6061 was used to establish the properties of the unreinforced material.  相似文献   

15.
Metal matrix composites based on the intermetallic alloy Ni3Al and fibres of Al2O3 were fabricated by hot-pressing nickel aluminide powders and alumina fibres. Two matrix alloys were used in this investigation: Ni3Al microalloyed with boron and Ni3Al alloyed with 8 at% chromium and smaller amounts of zirconium and boron. The materials were studied using optical and transmission electron microscopy with particular emphasis placed on the characteristics of the matrix-fibre interface. The base Ni3Al/Al3O3 composite displayed no evidence of chemical reaction at the interface, an intimate bond between matrix and fibre was observed, and the material exhibited 10% ductility at room temperature. Composites with the more complex matrix alloy were brittle, a phenomenon attributed to the formation of zirconia particles at the interface.  相似文献   

16.
Osman Asi   《Composite Structures》2010,92(2):354-363
An experimental study has been carried out to investigate the bearing strength behavior of pinned joints of glass fiber reinforced composite filled with different proportions of Al2O3 particles, as a function of filler loading and joint geometry. The weight fractions of the filler in the matrix were 7.5, 10, and 15%. Single-hole pin-loaded specimens of each composite material were tested in tension. The results show that the bearing strength of glass fiber reinforced epoxy composites pinned joints is associated with the filler content and geometric parameters. The increase of the Al2O3 particle loading in the matrix improved the bearing strength of the composites. The highest bearing strengths were obtained for composite specimens with 10 wt.% Al2O3 particle content. Further increases in the Al2O3 particle content in the matrix resulted in a decrease of the bearing strength, but remains above that of the unfilled glass reinforced epoxy composites.  相似文献   

17.
In this study, pressureless sintering of silicon carbide whisker (SiCw)-reinforced alumina composites was investigated. SiC whiskers or Al2O3 powders were coated with amorphous silica, and sintering behaviour was analysed according to the powder characteristics of the composite. It was found that amorphous silica coatings improved densification as compared with uncoated powders, because the viscous flow allows the release of any tensile stress due to differential shrinkage between the matrix and the silicon carbide whiskers. Mullite occurred when amorphous silica coatings reacted with alumina at 1500 °C, which resisted the viscous sintering of the amorphous silica coatings.  相似文献   

18.
The directed oxidation of molten aluminium alloys by vapour phase oxidants can be used to produce Al2O3/Al ceramic matrix composites. The toughness of these composites is determined by the amount and the nature of metal distribution in the composite. This paper addresses the problem of understanding the metal distribution in Al2O3/Al composites and its dependence on growth temperature. Electrical conductivities and microstructures of Al2O3/Al composites synthesized by directed oxidation of Al-5056 alloy are investigated. The high conductivity of the Al2O3/Al composite compared to sintered Al2O3-4 wt% MgO is shown as a proof of the presence of some continuous metal channels in the composite. The activation energy forthe diffusion of the dominant charge carrier in the oxide matrix is found to be 1.36 eV from the analysis of the conductivity data. Both the amount of metal in the composite and the extent of interconnection of the metal channels decrease with increasing growth temperature. The observed changes in microstructure with temperature can be explained by considering temperature variations of grain boundary energies in alumina and the alumina/aluminium interfacial energy. The metal content of the Al2O3/Al composites, prepared by directed oxidation of Al-5056 alloys, can be tailored by the choice of the growth temperature.  相似文献   

19.
《Composites Part A》2007,38(4):1200-1210
Metal matrix composites reinforced with Al2O3 particles combine the matrix properties with those of the ceramic reinforcement, leading to higher stiffness and superior thermal stability with respect to the corresponding unreinforced alloys. However, their wide application as structural materials needs proper development of a suitable joining processes. The present work describes the results obtained from microstructural (optical and scanning electron microscopy) and mechanical evaluation (hardness, tensile and low-cycle fatigue tests) of an aluminium alloy (AA6061) matrix composite reinforced with 20 vol.% fraction of Al2O3 particles (W6A20A), welded using the friction stir welding process. The mechanical response of the FSW composite was compared with that of the base material and the results were discussed in the light of microstructural modifications induced by the FSW process on the aluminium alloy matrix and on the ceramic reinforcement. The FSW reduced the size of both particles reinforcement and aluminium grains and also led to overaging of the matrix alloys due to the frictional heating during welding. The FSW specimens, tested without any post-weld heat treatment or surface modification showed lower tensile strength and higher elongation to failure respect to the base material. The low-cycle fatigue life of the FSW composite was always lower than that of the base material, mainly at the lower strain-amplitude value. The cyclic stress response curves of the FSW composite showed evidence of progressive hardening to failure, at all cyclic strain-amplitudes, while the base material showed a progressive softening.  相似文献   

20.
The 6061 aluminum matrix composite reinforced with SnO2-coated Al18B4O33 whisker was fabricated by squeeze casting and following by extrusion extruded at elevated temperatures from 300 °C to 400 °C. Optimization of the extruding process, microstructure, texture and mechanical properties of the extruded composites were investigated. The lowest extrusion temperature at which a composite rod with high surface quality was successfully produced was 300 °C. The yield strength of composites is much improved after extrusion, and especially their elongation is increased by 300%. Such big improvements depend on a fact that SnO2 coating can introduce low-melting-point Sn phase into the interface through an interfacial reaction. The melting of interphase and their surrounding areas is the main reason for the excellent extrusion ability of the composite. Besides, detailed X-ray diffraction analysis of the extruded composite textures reveals the significant effects of extrusion temperatures on their features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号