首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《国际计算机数学杂志》2012,89(16):2198-2223
In this report, a variational multiscale (VMS) method based on the Crank–Nicolson extrapolation scheme of time discretization for the turbulent flow is analysed. The flow is modelled by the fully evolutionary Navier–Stokes problem. This method has two differences compared to the standard VMS method: (i) For the trilinear term, we use the extrapolation skill to linearize the scheme; (ii) for the projection term, we lag it onto the previous time level to simplify the construction of the projection. These modifications make the algorithm more efficient and feasible. An unconditionally stability and an a priori error estimate are given for a case with rather general linear (cellwise constant) viscosity of the turbulent models. Moreover, numerical tests for both linear viscosity and nonlinear Smagorinsky-type viscosity are performed, they confirm the theoretical results and indicate the schemes are effective.  相似文献   

2.
3.
A linearized Crank–Nicolson Galerkin finite element method with bilinear element for nonlinear Schrödinger equation is studied. By splitting the error into two parts which are called the temporal error and the spatial error, the unconditional superconvergence result is deduced. On one hand, the regularity for a time-discrete system is presented based on the proof of the temporal error. On the other hand, the classical Ritz projection is applied to get the spatial error with order \(O(h^2)\) in \(L^2\)-norm, which plays an important role in getting rid of the restriction of \(\tau \). Then the superclose estimates of order \(O(h^2+\tau ^2)\) in \(H^1\)-norm is arrived at based on the relationship between the Ritz projection and the interpolated operator. At the same time, global superconvergence property is arrived at by the interpolated postprocessing technique. At last, three numerical examples are provided to confirm the theoretical analysis. Here, h is the subdivision parameter and \(\tau \) is the time step.  相似文献   

4.
In this paper we propose two error indicators aimed at estimating the space discretization error and the time discretization error for the unsteady Navier–Stokes equations. We define a space error indicator for evaluating the quality of the mesh and a time error indicator for evaluating the time discretization error. Moreover, we verify the reliability of the estimations through numerical experiments and we propose an effective space-time adaptive strategy for the unsteady Navier–Stokes equations. Such technique is based on two residual-based error indicators that suitably drive the mesh and the timestep-length modifications. Adaptive simulations show that the presented strategy allows to obtain accurate solutions in efficient way.  相似文献   

5.
The paper compares coupled multigrid methods and pressure Schur complement schemes (operator splitting schemes) for the solution of the steady state and time dependent incompressible Navier–Stokes equations. We consider pressure Schur complement schemes with multigrid as well as single grid methods for the solution of the Schur complement problem for the pressure. The numerical tests have been carried out on benchmark problems using a MIMD parallel computer. They show the superiority of the coupled multigrid methods for the considered class of problems. Received: 14 October 1997 / Accepted: 11 February 1998  相似文献   

6.
7.
In this paper, we describe recent developments in the design and implementation of Navier-Stokes solvers based on finite element discretization. The most important ingredients are residual driven a posteriori mesh refinement, fully coupled defect-correction iteration for linearization, and optimal multigrid preconditioning. These techniques were systematically developed for computing incompressible viscous flows in general domains. Recently they have been extended to compressible low-Mach flows involving chemical reactions. The potential of automatic mesh adaptation together with multilevel techniques is illustrated by several examples, (1) the accurate prediction of drag and lift coefficients, (2) the determination of CARS-signals of species concentration in flow reactors, (3) the computation of laminar flames. Received: 30 April 1999 / Accepted: 17 June 1999  相似文献   

8.
This paper is devoted to the numerical simulation of the Navier–Stokes–Korteweg equations, a phase-field model for water/water-vapor two-phase flows. We develop a numerical formulation based on isogeometric analysis that permits straightforward treatment of the higher-order partial–differential operator that represents capillarity. We introduce a new refinement methodology that desensitizes the numerical solution to the computational mesh and achieves mesh invariant solutions. Finally, we present several numerical examples in two and three dimensions that illustrate the effectiveness and robustness of our approach.  相似文献   

9.
《Computers & Fluids》2002,31(4-7):397-420
A novel B-spline collocation method for the solution of the incompressible Navier–Stokes equations is presented. The discretization employs B-splines of maximum continuity, yielding schemes with high-resolution power. The Navier–Stokes equations are solved by using a fractional step method, where the projection step is considered as a Div–Grad problem, so that no pressure boundary conditions need to be prescribed. Pressure oscillations are prevented by introducing compatible B-spline bases for the velocity and pressure, yielding efficient schemes of arbitrary order of accuracy. The method is applied to two-dimensional benchmark flows, and mass lumping techniques for cost-effective computation of unsteady problems are discussed.  相似文献   

10.
In this paper, the effect of a variable reordering method on the performance of “adapted incomplete LU (AILU)” preconditioners applied to the P2P1 mixed finite element discretization of the three-dimensional unsteady incompressible Navier–Stokes equations has been studied through numerical experiments, where eigenvalue distribution and convergence histories are examined. It has been revealed that the performance of an AILU preconditioner is improved by adopting a variable reordering method which minimizes the bandwidth of a globally assembled saddle-point type matrix. Furthermore, variants of the existing AILU(1) preconditioner have been suggested and tested for some three-dimensional flow problems. It is observed that the AILU(2) outperforms the existing AILU(1) with a little extra computing time and memory.  相似文献   

11.
The Modified Local Crank–Nicolson method is applied to solve one- and two-dimensional Burgers’ equations. New difference schemes that are explicit, unconditionally stable, and easy to compute are obtained. Numerical solutions obtained by the present method are compared with exact solutions, and it is seen that they are in excellent agreement.  相似文献   

12.
In this work we investigate the numerical difficulties that arise in optimizing the efficiency of Newtonian fluids simulations on a massively parallel computing hardware like a GPU. In particular, we will concentrate on the resulting algebraic problem. We will present an approximate, fully-iterative, ILU preconditioner and we will show that this solution is very efficient on a GPU if compared with an intrinsic massively parallel preconditioner like the diagonal preconditioner, which indeed goes faster than more robust techniques, like ILU, despite their strong decrease in the number of iterations. We refer to GMRES as the iterative scheme used to solve the linear system. In particular, we will deal with the solution of incompressible flows with variable density and we will investigate the interplay between Reynolds and Atwood numbers. We will show that the numerical simulation at medium–high Reynolds numbers produces linear systems whose matrices can be reasonably preconditioned with the diagonal preconditioner, while at low Reynolds numbers the higher viscosity of the fluid makes the diagonal preconditioner ineffective in the solution time requested from GMRES and, decreasing the Reynolds number, unable to let GMRES converge at all. In this situation, we will show how an adequate iterative approach to the parallel solution of the triangular systems that result from the ILU preconditioning, turns out to be robust and efficient. We will show numerical results for variable-density fluids, discretized with the scheme described in Calgaro et al. (2008), in classical benchmarks and, in particular, in the well-known Rayleigh–Taylor instability.  相似文献   

13.
14.
15.
Zhiqiang Cai  Jim Douglas  Xiu Ye 《Calcolo》1999,36(4):215-232
Recently, Douglas et al. [4] introduced a new, low-order, nonconforming rectangular element for scalar elliptic equations. Here, we apply this element in the approximation of each component of the velocity in the stationary Stokes and Navier–Stokes equations, along with a piecewise-constant element for the pressure. We obtain a stable element in both cases for which optimal error estimates for the approximation of both the velocity and pressure in L 2 can be established, as well as one in a broken H 1-norm for the velocity. Received: January 1999 / Accepted: April 1999  相似文献   

16.
《国际计算机数学杂志》2012,89(15):1996-2018
In this article, we suggest a new third-order time discrete scheme for the two-dimensional non-stationary Navier–Stokes equations. After presenting the Galerkin finite element approximation for the spatial discretization, we consider an implicit/explicit time discrete scheme for the problem, which is based on the two-step Adams–Moulton scheme (implicit scheme) for the linear term and the three-step Adams–Bashforth scheme (explicit scheme) for the nonlinear term. In this method, we only need to solve a linearized discrete system at each time step, so the scheme can converge fast and the computational cost can be reduced. Moreover, under some assumptions, we deduce the stability and optimal error estimate for the velocity in L 2-norm.  相似文献   

17.
This paper provides an implicit central compact scheme for the numerical solution of incompressible Navier–Stokes equations. The solution procedure is based on the artificial compressibility method that transforms the governing equations into a hyperbolic-parabolic form. A fourth-order central compact scheme with a sixth-order numerical filtering is used for the discretization of convective terms and fourth-order central compact scheme for the viscous terms. Dual-time stepping approach is applied to time discretization with backward Euler difference scheme to the pseudo-time derivative, and three point second-order backward difference scheme to the physical time derivative. An approximate factorization-based alternating direction implicit scheme is used to solve the resulting block tridiagonal system of equations. The accuracy and efficiency of the proposed numerical method is verified by simulating several two-dimensional steady and unsteady benchmark problems.  相似文献   

18.
We introduce and analyze an augmented mixed finite element method for the Navier–Stokes–Brinkman problem with nonsolenoidal velocity. We employ a technique previously applied to the stationary Navier–Stokes equation, which consists of the introduction of a modified pseudostress tensor relating the gradient of the velocity and the pressure with the convective term, and propose an augmented pseudostress–velocity formulation for the model problem. The resulting augmented scheme is then written equivalently as a fixed point equation, so that the well-known Banach fixed point theorem, combined with the Lax–Milgram lemma, are applied to prove the unique solvability of the continuous and discrete systems. We point out that no discrete inf–sup conditions are required for the solvability analysis, and hence, in particular for the Galerkin scheme, arbitrary finite element subspaces of the respective continuous spaces can be utilized. For instance, given an integer k0, the Raviart–Thomas spaces of order k and continuous piecewise polynomials of degree k+1 constitute feasible choices of discrete spaces for the pseudostress and the velocity, respectively, yielding optimal convergence. We also emphasize that, since the Dirichlet boundary condition becomes a natural condition, the analysis for both the continuous an discrete problems can be derived without introducing any lifting of the velocity boundary datum. In addition, we derive a reliable and efficient residual-based a posteriori error estimator for the augmented mixed method. The proof of reliability makes use of a global inf–sup condition, a Helmholtz decomposition, and local approximation properties of the Clément interpolant and Raviart–Thomas operator. On the other hand, inverse inequalities, the localization technique based on element-bubble and edge-bubble functions, approximation properties of the L2-orthogonal projector, and known results from previous works, are the main tools for proving the efficiency of the estimator. Finally, some numerical results illustrating the performance of the augmented mixed method, confirming the theoretical rate of convergence and properties of the estimator, and showing the behavior of the associated adaptive algorithms, are reported.  相似文献   

19.
In this paper we consider a conservative discretization of the two-dimensional incompressible Navier–Stokes equations. We propose an extension of Arakawa’s classical finite difference scheme for fluid flow in the vorticity–stream function formulation to a high order discontinuous Galerkin approximation. In addition, we show numerical simulations that demonstrate the accuracy of the scheme and verify the conservation properties, which are essential for long time integration. Furthermore, we discuss the massively parallel implementation on graphic processing units.  相似文献   

20.
《国际计算机数学杂志》2012,89(9):1964-1985
We implemented weighted least-squares finite element methods for the linearized Navier-Stokes equations based on the velocity–pressure–stress and the velocity–vorticity–pressure formulations. The least-squares functionals involve the L2-norms of the residuals of each equation multiplied by the appropriate weighting functions. The weights included a mass conservation constant, a mesh-dependent weight, a nonlinear weighting function, and Reynolds numbers. A feature of this approach is that the linearized system creates a symmetric and positive-definite linear algebra problem at each Newton iteration. We can prove that least-squares approximations converge with the linearized version solutions of the Navier–Stokes equations at the optimal convergence rate. Model problems considered in this study were the flow past a planar channel and 4-to-1 contraction problems. We presented approximate solutions of the Navier–Stokes problems by solving a sequence of the linearized Navier–Stokes problems arising from Newton iterations, revealing the convergence rates of the proposed schemes, and investigated Reynolds number effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号