首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To compare roles of specific enzymes in supply of NADPH for cellular biosynthesis, collections of yeast mutants were constructed by gene disruptions and matings. These mutants include haploid strains containing all possible combinations of deletions in yeast genes encoding three differentially compartmentalized isozymes of NADP+-specific isocitrate dehydrogenase and in the gene encoding glucose-6-phosphate dehydrogenase (Zwf1p). Growth phenotype analyses of the mutants indicate that either cytosolic NADP+-specific isocitrate dehydrogenase (Idp2p) or the hexose monophosphate shunt is essential for growth with fatty acids as carbon sources and for sporulation of diploid strains, a condition associated with high levels of fatty acid synthesis. No new biosynthetic roles were identified for mitochondrial (Idp1p) or peroxisomal (Idp3p) NADP+-specific isocitrate dehydrogenase isozymes. These and other results suggest that several major presumed sources of biosynthetic reducing equivalents are non-essential in yeast cells grown under many cultivation conditions. To develop an in vivo system for analysis of metabolic function, mammalian mitochondrial and cytosolic isozymes of NADP+-specific isocitrate dehydrogenase were expressed in yeast using promoters from the cognate yeast genes. The mammalian mitochondrial isozyme was found to be imported efficiently into yeast mitochondria when fused to the Idp1p targeting sequence and to substitute functionally for Idp1p for production of alpha-ketoglutarate. The mammalian cytosolic isozyme was found to partition between cytosolic and organellar compartments and to replace functionally Idp2p for production of alpha-ketoglutarate or for growth on fatty acids in a mutant lacking Zwf1p. The mammalian cytosolic isozyme also functionally substitutes for Idp3p allowing growth on petroselinic acid as a carbon source, suggesting partial localization to peroxisomes and provision of NADPH for beta-oxidation of that fatty acid.  相似文献   

2.
Intracolonic bacteria have previously been shown to produce substantial amounts of acetaldehyde during ethanol oxidation, and it has been suggested that this acetaldehyde might be associated with alcohol-related colonic disorders, as well as other alcohol-induced organ injuries. The capacity of colonic mucosa to remove this bacterial acetaldehyde by aldehyde dehydrogenase (ALDH) is, however, poorly known. We therefore measured ALDH activities and determined ALDH isoenzyme profiles from different subcellular fractions of rat colonic mucosa. For comparison, hepatic, gastric, and small intestinal samples were studied similarly. Alcohol dehydrogenase (ADH) activities were also measured from all of these tissues. Rat colonic mucosa was found to possess detectable amounts of ALDH activity with both micromolar and millimolar acetaldehyde concentrations and in all subcellular fractions. The ALDH activities of colonic mucosa were, however, generally low when compared with the liver and stomach, and they also tended to be lower than in small intestine. Mitochondrial low K(m) ALDH2 and cytosolic ALDH with low K(m) for acetaldehyde were expressed in the colonic mucosa, whereas some cytosolic high K(m) isoenzymes found in the small intestine and stomach were not detectable in colonic samples. Cytosolic ADH activity corresponded well to ALDH activity in different tissues: in colonic mucosa, it was approximately 6 times lower than in the liver and about one-half of gastric ADH activity. ALDH activity of the colonic mucosa should, thus, be sufficient for the removal of acetaldehyde produced by colonic mucosal ADH during ethanol oxidation. It may, however, be insufficient for the removal of the acetaldehyde produced by intracolonic bacteria. This may lead to the accumulation of acetaldehyde in the colon and colonic mucosa after ingestion of ethanol that might, at least after chronic heavy alcohol consumption, contribute to the development of alcohol-related colonic morbidity, diarrhea, and cancer.  相似文献   

3.
Carnitine is an essential cofactor for the mitochondrial beta-oxidation of long-chain fatty acids. The juvenile visceral steatosis (JVS) mouse, an animal model of systemic carnitine deficiency, is inherited in an autosomal recessive manner. Recently, a human OCTN2 gene encoding a sodium-dependent carnitine cotransporter was isolated and mapped to human chromosome 5q31. Since the mouse jvs locus was assigned to the region of chromosome 11 where it is syntenic to human chromosome 5q31, we isolated the mouse octn2 gene and screened for its mutation in the jvs mouse. DNA sequencing analysis disclosed a missense mutation from CTG (Leu) to CGG (Arg) at codon 352 located within the sixth transmembrane domain of octn2. This amino acid replacement possibly causes the conformational change of the protein that leads to dysfunction of the gene product. Hence, we conclude that octn2 is a candidate gene responsible for the JVS mouse.  相似文献   

4.
We have isolated a novel human C-C chemokine, MIP-1 delta from a human fetal spleen cDNA library. The human MIP-1 delta cDNA has an unusually long 400-bp 5-prime untranslated region and a predicted 113-amino acid protein of 10 kDa. The coding sequence contains a signal peptide of 21 amino acids, indicating that the mature protein has 92 amino acids (8 kDa). Recombinant human MIP-1 delta produced by transfected human embryonic kidney 293 cells produced an 8-kDa protein, which confirmed the presence of a signal peptide. Compared with other human C-C chemokines, human MIP-1 delta shows the highest homology with human HCC-1, CK beta-8, murine C10, and CCF18 (MIP-1 gamma). The human MIP-1 delta gene is localized on chromosome 17 where most of the C-C chemokine superfamily is located. Human MIP-1 delta is expressed in T and B lymphocytes, NK cells, monocytes, and monocyte-derived dendritic cells, but not in bone marrow-derived dendritic cells. Its expression can be induced by other proinflammatory cytokines in monocytes and dendritic cells. Human MIP-1 delta is chemotactic for T cells and monocytes, but not for neutrophils, eosinophils, or B cells. Human MIP-1 delta induced calcium flux in human CCR1-transfected cells.  相似文献   

5.
Oxidative conversions of all-trans-retinal (t-RAL), 13-cis-retinal (13-cRAL), and 9-cis-retinal (9-cRAL) to their corresponding retinoic acids (RAs) catalyzed by rat conceptal cytosol (RCC) or microsomes (RCM) were studied. The primary product of RCC-catalyzed oxidations of both t-RAL and 13-cRAL was t-RA, with only trace amounts of 13-cRA and 9-cRA. In the RCC-catalyzed oxidation of 9-cRAL, generated t-RA, 9-cRA, and 13-cRA constituted approximately 56, 34, and 10%, respectively, of the total RAs. For all RCC-catalyzed retinal oxidations, NAD was a much more effective cofactor than NADP. And t-RAL and 13-cRAL were much better substrates than 9-cRAL. Formaldehyde, acetaldehyde, citral, and disulfiram were investigated as inhibitors, but only citral and disulfiram effectively inhibited the RCC-catalyzed conversion of t-RAL or 13-cRAL to t-RA. Methanol and ethanol failed to inhibit either reaction even at very high concentrations (> or = 10 mM). RCM exhibited lower specific enzymatic activities than RCC in catalyzing oxidations of t-RAL, 13-cRAL, and 9-cRAL, indicating that the cytosolic fraction was dominant for converting retinals to RAs. The predominant RA produced from RCM-catalyzed oxidations of t-RAL, 13-cRAL, or 9-cRAL was t-RA for each substrate, and again NAD was a much more effective cofactor than NADP in all cases. For RCM-catalyzed oxidations of RALs, 13-cRAL was a much better substrate than t-RAL or 9-cRAL. Methanol and ethanol were not effective inhibitors for RCM-catalyzed oxidations of t-RAL or 13-cRAL. In RCM-catalyzed reactions, citral (10 mM) completely inhibited oxidation of t-RAL but showed only a minor effect on oxidation of 13-cRAL. 13-cRA was converted almost completely to t-RA after 2 hr of incubation with RCC.  相似文献   

6.
A variety of cytosolic thyroid-hormone-binding proteins with different characteristics have previously been reported. Here, we first describe the thyroid-hormone-binding characteristics of adult Xenopus liver cytosol, then a novel procedure for purifying cytosolic thyroid-hormone-binding protein (CTBP) from Xenopus liver (xCTBP). The procedure consists of combining preparative isoelectrofocusing, FPLC cation-exchange chromatography, HPLC hydrophobic-interaction chromatography and ultraviolet light cross-linking of 125I-labeled 3,3'5-triiodo-L-thyronine (T3). The isolated xCTBP thus prepared retained all the characteristics of the major thyroid- hormone-(TH)-binding component of the unfractionated cytosol. It is a monomeric protein of approximately 59 kDa with an isoelectric point of 7.0 +/- 0.1, binds T3 with a higher affinity than its analogs with a Kd of approximately 9 nM, and is sensitive to sulfhydryl agents but not to NADPH. In several respects, xCTBP differs from most CTBP-like preparations from other sources described hitherto. Microsequencing of a 23-amino-acid peptide generated from xCTBP by cyanogen bromide digestion revealed 92-100% identity of a 23-amino-acid sequence of several mammalian (amino acids 236-258) and avian (amino acids 245-267) cytosolic aldehyde dehydrogenases (ALDH); xCTBP also exhibited significant similarity of amino acid composition with rat ALDH. This novel finding of sequence identity between a CTBP and ALDH, and the diversity of CTBPs from different sources, suggest that a variety of cytosolic proteins, depending on the species and tissue, can function as thyroid-hormone-binding proteins.  相似文献   

7.
8.
A cDNA fragment encoding the mitochondrial alternative oxidase, the enzyme responsible for cyanide-insensitive and salicylhydroxamic acid (SHAM)-sensitive respiration, from the citric acid-producing fungus Aspergillus niger WU-2223L was cloned and expressed in Escherichia coli as a host strain. Synthetic primers were designed from the conserved nucleotide sequences of the alternative oxidase genes from higher plants and a yeast. The 210-bp DNA fragment was amplified by PCR with these primers using chromosomal DNA of WU-2223L as a template, and was employed to screen a cDNA library of A. niger. One full-length cDNA clone of 1.2 kb was obtained, and was sequenced to reveal that the clone contained an open reading frame (ORF-AOX1) encoding a polypeptide of 351 amino acids. The predicted amino-acid sequence exhibited 50%, 55%, and 52% homology to the alternative oxidases of Hansenula anomala, Neurospora crassa and Sauromatum guttatum, respectively. In the 5'-terminus region of the ORF-AOX1, a mitochondrial targeting motif was found. The whole open reading frame of ORF-AOX1 was ligated to plasmid pKK223-3 to construct the expression vector pKAOX1. The E. coli transformant harboring pKAOX1 showed cyanide-insensitive and SHAM-sensitive respiration, and expression was increased approximately two-fold by the addition of IPTG. These results indicated that the ORF-AOX1 encodes an alternative oxidase of A. niger.  相似文献   

9.
Addition of insulin or a physiological ratio of ketone bodies to buffer with 10 mM glucose increased efficiency (hydraulic work/energy from O2 consumed) of working rat heart by 25%, and the two in combination increased efficiency by 36%. These additions increased the content of acetyl CoA by 9- to 18-fold, increased the contents of metabolites of the first third of the tricarboxylic acid (TCA) cycle 2- to 5-fold, and decreased succinate, oxaloacetate, and aspartate 2- to 3-fold. Succinyl CoA, fumarate, and malate were essentially unchanged. The changes in content of TCA metabolites resulted from a reduction of the free mitochondrial NAD couple by 2- to 10-fold and oxidation of the mitochondrial coenzyme Q couple by 2- to 4-fold. Cytosolic pH, measured using 31P-NMR spectra, was invariant at about 7.0. The total intracellular bicarbonate indicated an increase in mitochondrial pH from 7.1 with glucose to 7.2, 7.5 and 7.4 with insulin, ketones, and the combination, respectively. The decrease in Eh7 of the mitochondrial NAD couple, Eh7NAD+/NADH, from -280 to -300 mV and the increase in Eh7 of the coenzyme Q couple, Eh7Q/QH2, from -4 to +12 mV was equivalent to an increase from -53 kJ to -60 kJ/2 mol e in the reaction catalyzed by the mitochondrial NADH dehydrogenase multienzyme complex (EC 1.6.5.3). The increase in the redox energy of the mitochondrial cofactor couples paralleled the increase in the free energy of cytosolic ATP hydrolysis, delta GATP. The potential of the mitochondrial relative to the cytosolic phases, Emito/cyto, calculated from delta GATP and delta pH on the assumption of a 4 H+ transfer for each ATP synthesized, was -143 mV during perfusion with glucose or glucose plus insulin, and decreased to -120 mV on addition of ketones. Viewed in this light, the moderate ketosis characteristic of prolonged fasting or type II diabetes appears to be an elegant compensation for the defects in mitochondrial energy transduction associated with acute insulin deficiency or mitochondrial senescence.  相似文献   

10.
11.
Male mice of three strains, C57BL, DBA and C3H/He, were fed on commercial food with 10% (v/v) ethanol solution as drinking liquid ad libitum for eighty days, and the changes in the activities of enzymes in the metabolic pathway of ethanol in the liver were examined. C57BL and C3H/He mice showed a preference for drinking the 10% (v/v) ethanol solution, while DBA mice did not. The ethanol intake g/g of body weight of C3H/He mice showed the highest value among all three strains and that of C57BL mice tended to show higher value than that of DBA mice. The liver weights of C57BL and C3H/He mice increased significantly following chronic ethanol administration, but that of DBA did not. The cytosolic enzyme alcohol dehydrogenase (ADH) showed no changes in any of the strains following chronic ethanol administration. The microsomal ethanol-oxidizing system (MEOS) of C57BL mice exhibited approximately 2-fold higher activity compared to that of DBA and C3H/He mice but did not increase in any strain following chronic ethanol administration. However, the microsomal aniline hydroxylase activity in the liver increased significantly in C57BL and C3H/He mice following chronic administration of ethanol. The microsomal cytochrome P-450 content also tended to slightly increase in the same strains of mice. It seemed that cytochrome P-450IIE1 was induced in the liver microsomes of these strains. Total aldehyde dehydrogenase (ALDH) activities together with high-Km ALDH activity increased markedly in the microsomes of C57BL mice and tended to increase in C3H/He mice, while it did not change in DBA mice following chronic ethanol administration. In the mitochondria of C57BL, total ALDH activities increased slightly and high-Km ALDH activities tended to increase. These mitochondrial ALDH activities of C3H/He and DBA mice tended to increase following chronic ethanol administration. The cytosolic ALDH activity showed no changes in any strain of mice following chronic ethanol administration. It seemed that in the microsomes, the activities of enzymes related to oxidation of ethanol increased in C57BL and C3H/He mice, which tended to consume a large amount of ethanol, and did not in DBA mice which tended to consume a small amount of it. It seemed that the increases in activities of enzymes related to oxidation of acetaldehyde in the microsomes and in the mitochondria were responsible for the strain difference.  相似文献   

12.
The subunit f of the yeast F1F0ATP synthase has been isolated from the purified enzyme. Amino acid composition, protein and peptide sequencing were performed. The data are in agreement with the sequence of the predicted product of the gene D9481.21 identified on the Saccharomyces cerevisiae chromosome IV. A 303-bp open reading frame encoding a 101-amino acid polypeptide is described. The deduced amino acid sequence from the ATP17 gene is 6 amino acids longer than the mature protein, which displays a molecular mass of 10567 Da. The protein is basic with a short hydrophobic segment located in the C-terminal part of the subunit. Subunit f remained associated with other F0 subunits upon sodium bromide treatment of the whole enzyme. A null mutant was constructed. The disrupted strain was unable to grow on glycerol medium and the mutation was recessive; rho- cells arose spontaneously. The null mutant mitochondria were devoid of oligomycin-sensitive ATPase, but still contained an active F1, while the subunits f, 6 and 8 were absent.  相似文献   

13.
We report the cDNA cloning, chromosomal localization, and a mutation in the human nuclear gene encoding the 18-kD (AQDQ) subunit of the mitochondrial respiratory chain complex I. The cDNA has an open reading frame of 175 amino acids and codes for a protein with a molecular mass of 23.2 kD. Its gene was mapped to chromosome 5. A homozygous 5-bp duplication, destroying a consensus phosphorylation site, in the 18-kD cDNA was found in a complex I-deficient patient. The patient showed normal muscle morphology and a remarkably nonspecific fatal progressive phenotype without increased lactate concentrations in body fluids. The child's parents were heterozygous for the mutation. In 19 other complex I-deficient patients, no mutations were found in the 18-kD gene.  相似文献   

14.
The DNA methyltransferases, M.HhaI and M.TaqI, and catechol O-methyl-transferase (COMT) catalyze the transfer of a methyl group from the cofactor S-adenosyl-L-methionine (AdoMet) to carbon-5 of cytosine, to nitrogen-6 of adenine, and to a hydroxyl group of catechol, respectively. The catalytic domains of the bilobal proteins, M.HhaI and M.TaqI, and the entire single domain of COMT have similar folding with an alpha/beta structure containing a mixed central beta-sheet. The functional residues are located in equivalent regions at the carboxyl ends of the parallel beta-strands. The cofactor binding sites are almost identical and the essential catalytic amino acids coincide. The comparable protein folding and the existence of equivalent amino acids in similar secondary and tertiary positions indicate that many (if not all) AdoMet-dependent methyltransferases have a common catalytic domain structure. This permits tertiary structure prediction of other DNA, RNA, protein, and small-molecule AdoMet-dependent methyltransferases from their amino acid sequences.  相似文献   

15.
During sexual development, mycelial cells from most filamentous fungi differentiate into typical fruiting bodies. Here, we describe the isolation and characterization of the Sordaria macrospora developmental mutant per5, which exhibits a sterile phenotype with defects in fruiting body maturation. Cytological investigations revealed that the mutant strain forms only ascus precursors without any mature spores. Using an indexed cosmid library, we were able to complement the mutant to fertility by DNA-mediated transformation. A single cosmid clone, carrying a 3.5-kb region able to complement the mutant phenotype, has been identified. Sequencing of the 3.5-kb region revealed an open reading frame of 2.1 kb interrupted by a 66-bp intron. The predicted polypeptide (674 amino acids) shows significant homology to eukaryotic ATP citrate lyases (ACLs), with 62 to 65% amino acid identity, and the gene was named acl1. The molecular mass of the S. macrospora ACL1 polypeptide is 73 kDa, as was verified by Western blot analysis with a hemagglutinin (HA) epitope-tagged ACL1 polypeptide. Immunological in situ detection of the HA-tagged polypeptide demonstrated that ACL is located within the cytosol. Sequencing of the mutant acl1 gene revealed a 1-nucleotide transition within the coding region, resulting in an amino acid substitution within the predicted polypeptide. Further evidence that ACL1 is essential for fruiting body maturation comes from experiments in which truncated and mutated versions of the acl1 gene were used for transformation. None of these copies was able to reconstitute the fertile phenotype in transformed per5 recipient strains. ACLs are usually involved in the formation of cytosolic acetyl coenzyme A (acetyl-CoA), which is used for the biosynthesis of fatty acids and sterols. Protein extracts from the mutant strain showed a drastic reduction in enzymatic activity compared to values obtained from the wild-type strain. Investigation of the time course of ACL expression suggests that ACL is specifically induced at the beginning of the sexual cycle and produces acetyl-CoA, which most probably is a prerequisite for fruiting body formation during later stages of sexual development. We discuss the contribution of ACL activity to the life cycle of S. macrospora.  相似文献   

16.
17.
18.
We have identified a new calcium-dependent subfamily of mitochondrial carrier proteins with members in Saccharomyces cerevisiae, Caenorhabditis elegans, and various mammalian species. The members of this subfamily have a bipartite structure: a carboxyl-terminal half with the characteristic features of the mitochondrial solute carrier superfamily and an amino-terminal extension harboring various EF-hand domains. A member of this subfamily (that we have termed Aralar) was cloned from a human heart cDNA library. The corresponding cDNA comprises an open reading frame of 2037 base pairs encoding a polypeptide of 678 amino acids. The carboxyl-terminal half of Aralar (amino acids 321-678) has high similarity with the oxoglutarate, citrate, and adenine nucleotide carriers (28-29% identity), whereas the amino-terminal half (amino acids 1-320) contains three canonical EF-hands. Aralar amino-terminal half was shown to bind calcium by 45Ca2+ overlay and calcium-dependent mobility shift assays. The subcellular localization of the protein in COS cells transfected with Aralar was exclusively mitochondrial. Antibodies against Aralar amino-terminal fusion protein recognized a 70-kDa protein in brain mitochondrial fractions. Northern blot analysis showed that the protein was expressed in heart, brain, and skeletal muscle. The domain structure, mitochondrial localization, and presence in excitable tissues suggests a possible function of Aralar as calcium-dependent mitochondrial solute carrier.  相似文献   

19.
The yeast Saccharomyces cerevisiae responds to osmotic stress, i.e., an increase in osmolarity of the growth medium, by enhanced production and intracellular accumulation of glycerol as a compatible solute. We have cloned a gene encoding the key enzyme of glycerol synthesis, the NADH-dependent cytosolic glycerol-3-phosphate dehydrogenase, and we named it GPD1. gpd1 delta mutants produced very little glycerol, and they were sensitive to osmotic stress. Thus, glycerol production is indeed essential for the growth of yeast cells during reduced water availability. hog1 delta mutants lacking a protein kinase involved in osmostress-induced signal transduction (the high-osmolarity glycerol response [HOG] pathway) failed to increase glycerol-3-phosphate dehydrogenase activity and mRNA levels when osmotic stress was imposed. Thus, expression of GPD1 is regulated through the HOG pathway. However, there may be Hog1-independent mechanisms mediating osmostress-induced glycerol accumulation, since a hog1 delta strain could still enhance its glycerol content, although less than the wild type. hog1 delta mutants are more sensitive to osmotic stress than isogenic gpd1 delta strains, and gpd1 delta hog1 delta double mutants are even more sensitive than either single mutant. Thus, the HOG pathway most probably has additional targets in the mechanism of adaptation to hypertonic medium.  相似文献   

20.
With the use of the degenerated nucleotides that contain the conserved sequence of G protein-coupled receptor, we have identified a 648-bp clone (HDGRC02) from human genomic DNA with significant sequence homology to human neurotransmitter receptors. HDGRC02 was then used as a probe for the screening of full length gene. From human Lambda DASH II genomic library, a 1.6 Kb clone encoded a full length gene was isolated and named putative neurotransmitter receptor (PNR). PNR has a single open reading frame which predicts a 38.3 KD protein of 338 amino acids with seven transmembrane domain topography. The amino acid sequence of PNR exhibits considerable homology to the rat 5-HR1D receptor with 35% amino acid identity and 56% amino acid similarity. PNR also shows significant sequence homology to the 5-HT1D receptor from Japanese puffer fish fugu, to the 5-HT4L receptor from mouse, to the alpha-2 adrenergic receptor and to the D2 dopamine receptor. Northern blot analysis indicates that PNR is expressed in skeletal muscle and selected areas of the brain. A chromosome mapping study located the PNR gene with human chromosome band of 6q23. The findings in the present study demonstrate that PNR is a putative neurotransmitter receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号