首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability to cope with and adapt to changes in the environment is essential for all organisms. Osmotic pressure is a universal threat when environmental changes result in an imbalance of osmolytes inside and outside the cell which causes a deviation from the normal turgor. Cells have developed a potent system to deal with this stress in the form of mechanosensitive ion channels. Channel opening releases solutes from the cell and relieves the stress immediately. In bacteria, these channels directly sense the increased membrane tension caused by the enhanced turgor levels upon hypoosmotic shock. The mechanosensitive channel of small conductance, MscS, from Escherichia coli is one of the most extensively studied examples of mechanically stimulated channels. Different conformational states of this channel were obtained in various detergents and membrane mimetics, highlighting an intimate connection between the channel and its lipidic environment. Associated lipids occupy distinct locations and determine the conformational states of MscS. Not all these features are preserved in the larger MscS-like homologues. Recent structures of homologues from bacteria and plants identify common features and differences. This review discusses the current structural and functional models for MscS opening, as well as the influence of certain membrane characteristics on gating.  相似文献   

2.
Channel-mediated trans-membrane chloride movement is a key process in the active cell volume regulation under osmotic stress in most cells. However, thymocytes were hypothesized to regulate their volume by activating a coupled K-Cl cotransport mechanism. Under the patch-clamp, we found that osmotic swelling activates two types of macroscopic anion conductance with different voltage-dependence and pharmacology. At the single-channel level, we identified two types of events: one corresponded to the maxi-anion channel, and the other one had characteristics of the volume-sensitive outwardly rectifying (VSOR) chloride channel of intermediate conductance. A VSOR inhibitor, phloretin, significantly suppressed both macroscopic VSOR-type conductance and single-channel activity of intermediate amplitude. The maxi-anion channel activity was largely suppressed by Gd(3+) ions but not by phloretin. Surprisingly, [(dihydroindenyl)oxy] alkanoic acid (DIOA), a known antagonist of K-Cl cotransporter, was found to significantly suppress the activity of the VSOR-type single-channel events with no effect on the maxi-anion channels at 10 μM. The regulatory volume decrease (RVD) phase of cellular response to hypotonicity was mildly suppressed by Gd(3+) ions and was completely abolished by phloretin suggesting a major impact of the VSOR chloride channel and modulatory role of the maxi-anion channel. The inhibitory effect of DIOA was also strong, and, most likely, it occurred via blocking the VSOR Cl(-) channels.  相似文献   

3.
We show that a nanopore in a silicon membrane connected to a voltage source can be used as an electrically tunable ion filter. By applying a voltage between the heavily doped semiconductor and the electrolyte, it is possible to invert the ion population inside the nanopore and vary the conductance for both cations and anions in order to achieve selective conduction of ions even in the presence of significant surface charges in the membrane. Our model based on the solution of the Poisson equation and linear transport theory indicates that in narrow nanopores substantial gain can be achieved by controlling electrically the width of the charge double layer.  相似文献   

4.
TRPV1, known as a capsaicin receptor, is the best-described transient receptor potential (TRP) ion channel. Recently, it was shown to be expressed by non-excitable cells such as lymphocytes. However, the data regarding the functional expression of the TRPV1 channel in the immune cells are often contradictory. In the present study, we performed a phylogenetical analysis of the canine TRP ion channels, we assessed the expression of TRPV1 in the canine peripheral blood mononuclear cells (PBMC) by qPCR and Western blot, and we determined the functionality of TRPV1 by whole-cell patch-clamp recordings and calcium assay. We found high expression of TRPV2, -M2, and -M7 in the canine PBMCs, while expression of TRPV1, -V4 and, -M5 was relatively low. We confirmed that TRPV1 is expressed on the protein level in the PBMC and it localizes in the plasma membrane. The whole-cell patch-clamp recording revealed that capsaicin application caused a significant increase in the current density. Similarly, the results from the calcium assay show a dose-dependent increase in intracellular calcium level in the presence of capsaicin that was partially abolished by capsazepine. Our study confirms the expression of TRPV1 ion channel on both mRNA and protein levels in the canine PBMC and indicates that the ion channel is functional.  相似文献   

5.
Sulfonated polysulfone cation‐exchange membranes with various degrees of sulfonation were prepared by a treatment with chlorosulfonic acid in different solvents of various polarities, and the effect of the solvent polarity on the degree of sulfonation was explored. These membranes were characterized by their ion‐exchange capacity, volume fraction of water, and electrochemical properties. The counterion transport numbers, permselectivity, and fixed charge densities of these membranes were estimated from membrane potential data and varied with the degree of sulfonation, concentration, and external salt concentration. The counterion mobility in the membrane phase was also estimated from membrane conductance measurements. These membrane were found to have good electrochemical properties and are suitable for various types of electromembrane processes. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2344–2351, 2005  相似文献   

6.
Sperm motility is linked to the activation of signaling pathways that trigger movement. These pathways are mainly dependent on Ca2+, which acts as a secondary messenger. The maintenance of adequate Ca2+ concentrations is possible thanks to proper concentrations of other ions, such as K+ and Na+, among others, that modulate plasma membrane potential and the intracellular pH. Like in every cell, ion homeostasis in spermatozoa is ensured by a vast spectrum of ion channels supported by the work of ion pumps and transporters. To achieve success in fertilization, sperm ion channels have to be sensitive to various external and internal factors. This sensitivity is provided by specific channel structures. In addition, novel sperm-specific channels or isoforms have been found with compositions that increase the chance of fertilization. Notably, the most significant sperm ion channel is the cation channel of sperm (CatSper), which is a sperm-specific Ca2+ channel required for the hyperactivation of sperm motility. The role of other ion channels in the spermatozoa, such as voltage-gated Ca2+ channels (VGCCs), Ca2+-activated Cl-channels (CaCCs), SLO K+ channels or voltage-gated H+ channels (VGHCs), is to ensure the activation and modulation of CatSper. As the activation of sperm motility differs among metazoa, different ion channels may participate; however, knowledge regarding these channels is still scarce. In the present review, the roles and structures of the most important known ion channels are described in regard to regulation of sperm motility in animals.  相似文献   

7.
The separation of uranium from synthetic Hanford site groundwater by liquid-liquid extraction and by supported liquid membranes (SLM) was atudied. Bis(2,4,4-trimethylpentyl) phosphinic acid, H[DTMPeP], contained in the commercial extractant Cysnex 272, was selected for the membrane carrier because of its selectivity for uranium over calcium and magnesium. n-Dodecane was used as diluent and polypropylene membranea were used as the support. A water soluble complexing agent, 1-hydroxyethane-1,1-diphoaphonic acid, HEDPA, was used as atrlpping agent.

The permeability coefficient of U(V1) was evaluated from a detailed study of the permeation of U(VI) through flat-sheet SLMs as a function of the membrane carrier concentration. The diffusion coefficient of the uranium complex in the organic phase was also evaluated from permeation experiments performed under loading conditions. Experiments were also carried out with Cs(II) and Fe(III) to measure the membrane selectivity for U(VI) over these two cations. A very high selectivity of U(VI) over Cs(II) was obtained, due the very low distribution ratio of Cs(II) with the extractant H[DTMPeP] (thermodynamic selectivity). In the case of Fe(III), a good selectivity was also obtained, due to the slow reaction of Fe(III) species with H[DTMPeP] (kinetic selectivity).

The possibility of concentrating U(VI) in the strip solution by a factor of at least 103 has been experimentally demonstrated by properly designed distribution experiments.  相似文献   

8.
Ion and water transport characteristics of Nafion membranes as electrolytes   总被引:1,自引:0,他引:1  
Transport characteristics of Nafion membranes, that have been published earlier, are re-evaluated. It is found that the specific conductivity of the membranes is not only determined by the mobility of the ions, but largely also by the interaction of ions with water and with microscopic membrane channel structures. Similarly, the water transference coefficient, defined as the number of moles of water transported per Faraday through the membrane, is governed by two effects: an electrostatic effect between ion and water dipoles, and an effect due to the size of the cation. Contributions to electro-osmotic water transfer are water of hydration to cations and hydrodynamically pushed water molecules. The size of the ion compared to the channel diameter, has a major impact on the electric conductivity, but also on water transport. It is shown that hydrophilic cations can promote an enlarged hydrophilic domain in the membrane, that is accompanied by a lower membrane resistance. Criteria for designing high performance ion conducting membranes are given based on this basis.  相似文献   

9.
The concerted function of the large number of ion channels expressed in excitable cells, including brain neurons, shapes diverse signaling events by controlling the electrical properties of membranes. It has long been recognized that specific groups of ion channels are functionally coupled in mediating ionic fluxes that impact membrane potential, and that these changes in membrane potential impact ion channel gating. Recent studies have identified distinct sets of ion channels that can also physically and functionally associate to regulate the function of either ion channel partner beyond that afforded by changes in membrane potential alone. Here, we review canonical examples of such ion channel partnerships, in which a Ca2+ channel is partnered with a Ca2+-activated K+ channel to provide a dedicated route for efficient coupling of Ca2+ influx to K+ channel activation. We also highlight examples of non-canonical ion channel partnerships between Ca2+ channels and voltage-gated K+ channels that are not intrinsically Ca2+ sensitive, but whose partnership nonetheless yields enhanced regulation of one or the other ion channel partner. We also discuss how these ion channel partnerships can be shaped by the subcellular compartments in which they are found and provide perspectives on how recent advances in techniques to identify proteins in close proximity to one another in native cells may lead to an expanded knowledge of other ion channel partnerships.  相似文献   

10.
Voltage-gated proton selective channels occupy an ill-defined region between “normal” ion channels and a variety of proton-conducting pathways inside proteins, including, but not limited to, membrane-bound proteins. Voltage-gated H+ channels closely resemble other voltage-gated ion channels in their voltage- and time-dependent gating, but differ in their extreme selectivity, their miniscule single-channel conductance, and the high activation enthalpy for conduction. Furthermore, in contrast with the “multiple occupancy” hypothesized to account for aspects of permeation through other ion channels, it seems unlikely that H+ channels can be occupied by more than one proton at a time. Voltage-gated H+ channels functionally resemble other proton-conducting pathways in proteins, but until their structure has been determined, this similarity will remain speculative. The present restriction to functional measurements is less of a handicap than might be expected—the history of ion channel research shows that deductions based on electrophysiological measurements often closely predict the eventually determined structure. Existing evidence supports the idea that protons permeate the membrane through voltage-gated H+ channels by hopping across a hydrogen-bonded chain that consists of at least some amino acid side groups in addition to water molecules.  相似文献   

11.
研究了以自制胶原蛋白载体及C-DISK载体培养CHO细胞生产rHuEPO蛋白的过程,并以进口A-DISK载体作为对照培养。对培养过程中细胞贴壁过程、葡萄糖代谢速率、rHuEPO浓度及葡萄糖代谢速率与rHuEPO的浓度变化关系进行了实验研究分析和对比。结果表明:自制胶原蛋白载体培养细胞具有良好的生物代谢活力和蛋白表达能力,葡萄糖代谢速率高达14.2mmol?mL?1?h?1,比自制C-DISK载体高16.4%,比进口A-DISK载体高12.7%;在自制胶原蛋白载体上培养CHO细胞时EPO表达量也最高,培养10天后EPO浓度达到282U?mL?1,比自制C-DISK载体高30%,也比进口A-DISK载体高18%。自制胶原蛋白载体具有较佳的性价比,是一种高效、廉价的动物细胞培养载体。细胞的葡萄糖代谢水平对蛋白表达有着重要的影响,但两者又不同步,因此可用葡萄糖的代谢速率变化对该培养过程和目的蛋白表达进行适当监测和调控。  相似文献   

12.
The aim of this work is to develop new selective cation exchange membranes (CEMs) from bivalent to monovalent selectivity by surface functional groups. So, a novel hybrid cation exchange membrane was prepared by polymerization of polyaniline on a composite membrane, made of polyvinylidene fluoride (PVDF) and sulfonated PVDF (S-PVDF). Polyaniline was doped with different doping agents and their effect on total salt extraction and selectivity of bivalent to monovalent cations was evaluated. The chemical and morphological properties of hybrid membranes were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Ion exchange capacity (IEC), transport number, ion conductivity and water uptake decreased after surface polymerization. Composite membrane has a good selectivity (∼2) for bivalent and excellent removal of both cations. The hybrid membrane, doped with pTSA has a very high selectivity for monovalent ions (∼7.1) and a high removal of monovalent ions.  相似文献   

13.
An electrochemical concentrator for application to the chlorine-caustic industry is currently under development. In it 30 to 35 wt % NaOH enters the anolyte and catholyte chambers and exits at 20 and 50 wt %, respectively. Consequently, in support of the electrochemical concentrator development, the conductance and transport properties of advanced cation exchange membranes in concentrated sodium hydroxide, are being investigated. The membrane voltage drop, sodium ion transport and water flux of these membranes in 20 to 35 wt % sodium hydroxide anolyte and 30 to 50 wt % sodium hydroxide catholyte at 75°C are presented. To better understand the behaviour of these membranes, electrolyte sorption measurements were conducted in the anolyte/catholyte environment appropriate for the electrochemical concentrator. The water uptake data appear to correlate well with the conductance data and the combined NaOH and water sorption data are consistent with the sodium ion transport data.  相似文献   

14.
Membrane potentials across hybrid charged mosaic membrane in organic solutions were measured. Equilibrium swelling degree (SD) and fixed charge density in both organic solutions and water were also determined. Ethylene glycol, ethanol, n-propanol and glycerol were used as organic solutes; meanwhile 0.001mol-dm^-3 aqueous KCl solution was utilized as a strong electrolyte to measure the electrical difference. Equilibrium swelling degree indicated that it could be affected by the density of organic solutes; while it enhanced with the increasing density of these solutes. The measurement of fixed charge density showed that the membrane had the maximal absolute value in water among these solvents whether for cationic or anionic groups; the difference of dielectric constant between the water and the organic solutes might be responsible for these change trends. It was confirmed that membrane potentials increased with both the increasing concentration of the organic solutions and the elevated pH values. These results demonstrated that the characteristics of the hybrid charged mosaic membrane could be highly impacted by the properties of the organic solutes. A theoretical modal for charged membranes in ternary ion systems of weak electrolyte can be used to explain the above-mentioned phenomena.  相似文献   

15.
Nanofiltration (NF) has recently received increased attention as a possible tertiary treatment process providing high rejection of solutes and high water flux rate. In this research, solute separation experiments using NF membranes were made with inorganic salts including heavy metal and organic compounds in different pH levels. The rejection of inorganics from feed solution was found to be dependent on the electric charge of membrane as well as the ionic radius and valence of ion. The divalent cation appeared to reduce the potential of negatively charged membrane to lower the rejection of ion. The results of organic compounds showed that the rejection could be estimated from the pKa value and molecular weight of organics, and the pH of the feed solution.  相似文献   

16.
We present a novel synthetic ion exchange membrane that is composed of 4-styrenesulfonic acid sodium salt hydrate (NaSS), methacrylic acid (MAA) and methyl methacrylate (MMA), which was synthesized with various monomer ratios using solution polymerization. The ion exchange membrane was prepared by heat cross-linking and esterification reactions. The chemical structure of the membrane was characterized using Fourier-transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy. Several membrane properties were measured, including water uptake, ion exchange capacity (IEC), ion transport number and electrical properties. The morphology analysis of the membrane was also obtained by scanning electron microscope (SEM). Increasing the NaSS concentration simultaneously increased the IEC and the electrical conductivity due to the increased presence of ionic groups. Compared with conventional membranes, the pattern of cyclic charge and discharge currents in the synthetic membrane indicated that it possessed more efficient electrosorption and desorption properties.  相似文献   

17.
Ion-channel mimics are able to transmit electrical signals across phospholipid membranes, and can be envisioned as nanoswitches for molecular electronics. Here, we reported the use of pH to alter ion-transport rates through a synthetic aminocyclodextrin ion channel. Both cation- and anion-transport rates were found to increase with an increase in pH due to the unique electrostatics of the multiple ammonium groups that line the channel pore. Such pH regulation of ion transport rates is unique and can be exploited for sensing applications.  相似文献   

18.
The thermosensory transient receptor potential (thermoTRP) family of ion channels is constituted by several nonselective cation channels that are activated by physical and chemical stimuli functioning as paradigmatic polymodal receptors. Gating of these ion channels is achieved through changes in temperature, osmolarity, voltage, pH, pressure, and by natural or synthetic chemical compounds that directly bind to these proteins to regulate their activity. Given that thermoTRP channels integrate diverse physical and chemical stimuli, a thorough understanding of the molecular mechanisms underlying polymodal gating has been pursued, including the interplay between stimuli and differences between family members. Despite its complexity, recent advances in cryo-electron microscopy techniques are facilitating this endeavor by providing high-resolution structures of these channels in different conformational states induced by ligand binding or temperature that, along with structure-function and molecular dynamics, are starting to shed light on the underlying allosteric gating mechanisms. Because dysfunctional thermoTRP channels play a pivotal role in human diseases such as chronic pain, unveiling the intricacies of allosteric channel gating should facilitate the development of novel drug-based resolving therapies for these disorders.  相似文献   

19.
This Account describes a recent study of reactions on ice surfaces with the emphasis on the mechanistic features of elementary reactions steps. Cs(+) reactive ion scattering (Cs(+) RIS) and low-energy sputtering (LES) techniques monitor the reactions by detecting the molecules and ions on the ice surface. The types of reactions include molecule diffusion and migration, proton transfer, and some simple reactions on frozen water and alcohol surfaces. Ice surface reactions exhibit unique behaviors due to a kinetic constraint, resulting in the isolation of reaction intermediates, preferential stabilization of charged species, and diversity of reaction products.  相似文献   

20.
Piezo1/2 are mechanosensitive calcium-permeable channels that can be activated by various modes of membrane deformation. The identification of the small molecule Yoda1, a synthetic Piezo1 agonist, revealed the possibility of chemical activation of the channel. Stimulating effects of Yoda1 on Piezo1 have been mainly documented using over-expressing cellular systems or channel proteins incorporated in artificial lipid bilayers. However, the activating effect of Yoda1 on native Piezo1 channels in the plasma membrane of living cells remains generally undefined, despite the increasing number of studies in which the agonist is utilized as a functional tool to reveal the contribution of Piezo1 to cellular reactions. In the current study, we used the human myeloid leukemia K562 cell line as a suitable model to examine chemically induced Piezo1 activity with the use of the patch-clamp technique in various specific modes. The functional expression of Piezo1 in leukemia cells was evidenced using a combinative approach, including single channel patch-clamp measurements. Utilizing our established single-current whole-cell assay on K562 cells, we have shown, for the first time, the selective real-time chemical activation of endogenously expressed Piezo1. Extracellular application of 0.5–1 µM Yoda1 effectively stimulated single Piezo1 currents in the cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号