首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用熔融Na2S对活性炭表面进行改性,通过循环伏安测试了活性炭的比电容,并通过FT-IR, BET, EIS和电泳实验分析了比电容变化的原因及其储能机理。研究发现,以10%的硫酸钠溶液为电解质,活性炭经Na2S 1000℃热处理1 h后的比电容由44.6 F/g提升至80.8 F/g,所增加的比电容主要来自于双电层电容,部分来自于氧化还原赝电容(占总电容的5.6%)。通过向电解质溶液中添加37 mmol/L的FeCl3,比电容提高至103 F/g (赝电容占12.6%),但并不稳定,后期有下降的趋势。如果向电解质溶液添加30 mmol/L的K3[Fe(CN)6],则比电容提升到了126 F/g,并且非常稳定、甚至有继续缓慢增加的趋势。活性炭经Na2S热处理后,储能机理由单纯的双电层物理储能变为双电层物理&化学储能+氧化还原赝电容储能。  相似文献   

2.
杨芳  刘晨  杨绍斌  董伟 《硅酸盐学报》2019,47(10):1499-1508
活性炭电极材料广泛的应用于超级电容器中,制备活性炭的前驱体种类繁多,其中煤炭是优质的活性炭前驱体,它的含碳量高、储量丰富且价格低廉。以煤为前驱体制备活性炭可以拓宽煤的应用领域,提高煤炭附加值。综述了最新煤基活性炭电极材料的研究进展,分析了煤基活性炭性质对超级电容器电性能的影响,最后对煤基活性炭未来的研究方向以及发展前景提出了展望。  相似文献   

3.
为了研究煤基活性炭电极对超级电容器性能的影响规律,根据超级电容器的工作原理,阐述了比表面积、孔径分布、表面官能团、石墨化程度、灰分及粒度对电化学性能的影响。研究表明适宜的中孔比例和粒度有利于电解液的扩散;含氧和含氮官能团可以改善电极的表面润湿性;无定型炭结构孔隙更发达,更适合作为活性炭材料;降低灰分可以提高电极的充放电特性和倍率特性。  相似文献   

4.
综述了目前国内外利用,植物类生物质、动物类生物质和其他类生物质制备活性炭材料的研究进展及存在问题,展望了生物质制备活性炭材料的未来发展方向。  相似文献   

5.
以椰壳炭化料为原料,KOH为活化剂,在不同工艺条件下制备了超级电容器用活性炭电极材料。考察了碱炭比、活化温度和活化时间对活性炭孔隙结构及其用作电极材料的比电容的影响。结果表明,在KOH与椰壳炭化料质量比为4:1,活化温度800℃,活化时间60 min的条件下,可制得比表面积2891 m2/g,总孔容积1.488 cm3/g,中孔率73.6%,比电容达235 F/g的优质活性炭电极材料。  相似文献   

6.
以核桃壳为原料,在不同活化时间下用水蒸气活化法制备了3种具有不同比表面积的活性炭。利用SEM、FT-IR、XRD和康塔吸附仪探究活化时间对材料的表面形貌、物相结构和孔径分布的影响。并通过恒电流充放电法、循环伏安法等测试其电化学性能。3个样品均表现出优异的大倍率性能(最大电流密度为20. 0 A/g)。结果表明,随着活化时间增加,样品的比表面积增大,比电容增大,但稳定性下降。活化时间为120 min时活性炭样品比表面积为1 644 m2/g,孔径分布合理;在有机电解液体系中最大比电容为83. 8 F/g,最大能量密度为18. 2 Wh/kg,该样品具有良好的稳定性和可逆性,最适合长期应用。  相似文献   

7.
综述了超级电容器及其最常用的电极材料-活性炭材料。介绍了活性炭电极超级电容器的工作原理,总结了物理活化、化学活化以及物理-化学联合活化等制备活性炭电极材料的方法,并指出了各种方法的优点及存在的问题。重点阐述了活性炭材料的比表面积、孔径分布及表面官能团等影响因素对超级电容器电化学性能的影响,最后对活性炭电极材料的未来发展方向进行了展望。  相似文献   

8.
9.
本研究提供一种适用于超级电容器的沥青基活性炭-MnO复合材料。以石油沥青为碳源,乙酸锰为锰源,通过压片成型和一步活化法的结合,制备得到了MnO负载沥青基活性炭复合材料(PAC@MnO)。PAC@MnO具有高比表面积且孔道主要由微-介多级孔构成。作为电容器电极材料,在三电极体系下,研究了不同MnO负载量对PAC@MnO-x电极性能的影响,其中PAC@MnO-0.3电极在0.5 A/g电流密度下比电容高达344.5 F/g,在高电流密度为20.0 A/g下,仍具有190 F/g的比电容,表现出优异的倍率性能。将PAC@MnO-0.3与PAC@MnO-0组装成水系非对称超级电容器,在5.0 A/g电流密度下循环3 000圈后,其容量保持率高达87.24%,表现出优异的循环稳定性。MnO纳米粒子与PAC的均匀复合不仅显著提升了MnO的导电性,同时抑制了其在充放电过程中的体积膨胀,使PAC@MnO呈现出优异的电化学特性。此外,PAC丰富的多级孔结构为电解液离子的存储提供了大量的活性位点,并为电解液离子的快速传输提供通道。  相似文献   

10.
11.
以商业活性炭为载体,通过硝酸表面改性活性炭,引入含氧官能团,为棒状二氧化锰(MnO2)和活性炭的结合提供桥梁。采用化学沉淀法在炭表面反应生成纳米结构的棒状二氧化锰,制备二氧化锰/改性活性炭(MnO2/OAC)复合电极材料。采用扫描电镜(SEM)、X射线衍射(XRD)对其结构进行表征;采用循环伏安法、恒流充放电对其电化学性能进行研究。结果表明,生成的MnO2均匀地负载在碳的表面,颗粒的直径在20~50nm;在1mol/L的Na2SO4电解液中,MnO2/OAC6复合电极材料体现了极佳的比电容,达到369.7F/g。材料优异的电化学性能归功于活性炭发达的孔隙结构和MnO2提供的法拉第电容。  相似文献   

12.
以商业活性炭为载体,通过硝酸表面改性活性炭,引入含氧官能团,为棒状二氧化锰(MnO2)和活性炭的结合提供桥梁。采用化学沉淀法在炭表面反应生成纳米结构的棒状二氧化锰,制备二氧化锰/改性活性炭(MnO2/OAC)复合电极材料。采用扫描电镜(SEM)、X射线衍射(XRD)对其结构进行表征;采用循环伏安法、恒流充放电对其电化学性能进行研究。结果表明,生成的MnO2均匀地负载在碳的表面,颗粒的直径在2050nm;在1mol/L的Na2SO4电解液中,MnO2/OAC6复合电极材料体现了极佳的比电容,达到369.7F/g。材料优异的电化学性能归功于活性炭发达的孔隙结构和MnO2提供的法拉第电容。  相似文献   

13.
采用简单化学沉淀法,以十六烷基三甲基溴化铵(CTAB)为模板,Co(NO3)2.6H2O和NaOH为原料,空气作为温和氧化剂,室温下合成了具有花状分级多孔结构的Co3O4纳米颗粒电极材料。X-射线衍射(XRD)表明,产物中主要成分为Co3O4;扫面电镜的结果显示,制备的材料具有菜花状分级多孔结构;电化学测试结果表明,最高比容量达250 F/g,且经过1 000次循环后,容量保持了84%,显示出良好的超级电容性能。  相似文献   

14.
以土豆为碳源,乙二胺为氮源,氢氧化钾为活化剂制备具有微孔结构高比表面积氮掺杂活性炭。通过N_2物理吸附、扫描电镜、透射电镜、拉曼光谱和元素分析研究活性炭比表面积、孔结构、形貌及元素组成,并测试其电化学性能。结果表明,当碱碳质量比为5∶1时(NC600-800-5),活性炭材料比表面积最高2 440 m~2·g~(-1)、孔容最大1.07 cm~3·g~(-1)、孔径最大0.82 nm和1.80 nm。电流密度1 A·g~(-1)时比电容可达370 F·g~(-1),经3 000次循环充放电后,比电容保持率为95.2%。  相似文献   

15.
王艺霖  李诗杰 《化工进展》2022,41(12):6454-6460
传统工艺制备的活性炭微孔足够,但中孔、大孔含量缺乏,导致其用作超级电容器电极材料时电化学性能水平较低。为解决这一问题,采用盐酸对炭化前浒苔原料进行预处理。酸处理去除了原料中大部分的杂质金属,其中,海藻酸钙与盐酸发生化学反应形成了蛋壳初始孔,酸溶性碱金属离子与盐酸发生置换反应形成了无规则初始孔隙,明显增加了活性炭的中孔含量。实验结果表明:盐酸预处理后的活性炭比表面积明显增加,由2273m2/g增至3166m2/g,孔容由2.10cm3/g增至3.82cm3/g,中孔率显著提高,改善了孔结构的连通性,促进了电解质离子在材料内部的扩散;当电流密度为0.1A/g时,经过酸洗处理的活性炭比电容高达359F/g,比原样活性炭比电容的293F/g增长了23%,超级电容器等效串联电阻很小,表现出良好的电化学性能。  相似文献   

16.
祁晓津  张康龙  胡奇林 《当代化工》2014,(12):2493-2496
以神华宁煤集团优质太西煤为原料,经物理化学法在800~850℃条件下活化处理,制备出超级电容器用煤基活性炭,并对改性前后活性炭的孔结构和形态进行表征。通过循环伏安、恒流充放电等测试手段,对该样品作为超级电容器电极材料而制备的电容器特性及其比电容进行研究。结果表明,以本实验所得太西煤基活性炭为原料制备的超级电容器电极抗化学腐蚀性能强、热膨胀系数较小、密度低,且具有优良的导热和大电流导电性能。  相似文献   

17.
18.
制备了活性炭纤维/聚苯胺(ACF/PANI)复合电极材料,探讨了其电化学性能。通过傅里叶变换红外光谱仪、扫描电子显微镜、循环伏安和恒流充放电等测试对电极材料进行了表征。结果表明:聚苯胺在活性炭纤维上紧密均匀地生长,相互交错搭建成导电网状结构,经循环伏安测试,复合材料的比电容值可达832.80F·g~(-1),储能性能良好。以活性炭纤维/聚苯胺复合材料为负极组成超级电容器,经恒流充放电测试衰减率为31.3%,表现出良好的循环稳定性。  相似文献   

19.
以生物质法国梧桐枯叶为原料,将炭化的枯叶通过KOH化学活化处理,制备法国梧桐枯叶基活性炭(PLAC)。采用扫描电子显微镜(SEM)、X射线能量色散谱(EDS)、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FTIR)、氮气吸脱附对法国梧桐基枯叶活性炭的形貌、成分、比表面积、孔径分布等进行表征;运用三电极电化学体系,通过循环伏安,恒流充放电,循环稳定性测试,电化学阻抗谱分析法国梧桐枯叶基活性炭的超级电容器电极性能。结果显示,在800℃下碳化,通过KOH活化处理的法国梧桐基活性炭制备的电极,在1 A·g-1电流密度下,比电容达到266 F·g-1。电极在5 A·g-1的电流密度下循环2000次后,比容量仍保留 97.0%,展示出良好的电极性能。  相似文献   

20.
采用简单化学沉淀法,以十六烷基三甲基溴化铵(CTAB)为模板,Co(NO3)2.6H2O和NaOH为原料,空气作为温和氧化剂,室温下合成了具有花状分级多孔结构的Co3O4纳米颗粒电极材料。X-射线衍射(XRD)表明,产物中主要成分为Co3O4;扫面电镜的结果显示,制备的材料具有菜花状分级多孔结构;电化学测试结果表明,最高比容量达250 F/g,且经过1 000次循环后,容量保持了84%,显示出良好的超级电容性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号