首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sorption of phenanthrene to varying soil types was investigated to better understand sorption processes. Humic acid and humin fractions were isolated from each soil sample, and sorption coefficients were measured by batch equilibration. Samples were characterized by carbon analysis and 13C cross polarization magic angle spinning (CP/ MAS) nuclear magnetic resonance (NMR) spectroscopy. Measured organic carbon-normalized sorption coefficients (Koc) of the fractions were greater in all cases when compared to the soils. The humin fractions exhibited greater Koc values than did source samples, suggesting that fractionation may reorganize organic matter in humin resulting in an increased availability of and/or more favorable sorption domains. Mass balance calculations revealed that the sum of sorption to the fractions is greater than sorption to the whole sample. The greatest difference between sorption values was found to occur with the mineral soils, suggesting that clay minerals influence the physical conformation of soil organic matter (SOM) and availability of sorption domains. The mass balance, sorption data, and a lack of consistent trends between observed Kco values and solid-state 13C NMR data suggest that the physical conformation of SOM and chemical characteristics both play important roles in sorption processes.  相似文献   

2.
Phenanthrene sorption by aliphatic-rich natural organic matter   总被引:1,自引:0,他引:1  
Contaminant sorption, an important process that may limit bioavailability, hinder remediation, encourage environmental persistence, and control mobility in the environment, has been the focus of numerous studies. Despite these efforts, the fundamental understanding of sorptive processes in soil and sedimentary environments has not been resolved. For instance, many have suggested that contaminants, such as polycyclic aromatic hydrocarbons (PAHs), solely interact with aromatic domains of organic matter. Until now, studies have neglected the aliphatic components that are known to be a recalcitrant and significant part of soil and sedimentary organic matter (SOM). In this investigation, the sorption of phenanthrene to several aliphatic-rich SOM samples was measured. The samples included the following: SOM precursors (algae, degraded algae, cellulose, collagen, cuticle, and lignin), two kerogen samples, and a highly aromatic humic acid. All samples were characterized by cross polarization magic angle spinning carbon-13 (CPMAS 13C) NMR and carbon, hydrogen, and nitrogen analysis. Batch experiments demonstrated that the highest organic carbon normalized sorption coefficients (Koc values) were obtained with the Pula kerogen sample (log Koc = 4.88) that only contains 6.5% aromatic carbon. Other aliphatic-rich samples, namely the Green River kerogen, degraded algae, and collagen samples produced comparable log Koc values (4.64, 4.66, and 4.72, respectively) to that of the highly aromatic humic acid (log Koc = 4.67). Phenanthrene uptake was the least for cellulose and lignin, two major soil components. A comparison of phenanthrene Koc values and paraffinic carbon content revealed a positive correlation (Koc = 798 +/- 96.1 * paraffinic carbon (%), r2 = 0.56) and indicates that amorphous polymethylene carbon is an important consideration in phenanthrene sorption. This study establishes that aliphatic SOM domains have a strong affinity for phenanthrene and likely, other PAHs. Therefore, aliphatic structures, that are an important component of SOM, require more attention in the examination of sorption processes in terrestrial and sedimentary environments.  相似文献   

3.
4.
Results from natural and engineered phytoremediation systems provide strong evidencethatvegetated soils mitigate polycyclic aromatic hydrocarbon (PAH) contamination. However, the mechanisms by which PAH mitigation occurs and the impact of plant organic matter on PAH attenuation remain unclear. This study assessed the impact of plant organic matter on PAH attenuation in labile and refractory sediments fractions from a petroleum distillate waste pit that has naturally revegetated. Samples were collected in distinct zones of barren and vegetated areas to assess changes to organic matter composition and PAH content as vegetation colonized and became established in the waste pit. Sediments were fractionated into bulk sediment and humin fractions and analyzed for organic matter composition by isotope ratio mass spectrometry (delta (13)C), 13C nuclear magnetic resonance (13C NMR), delta 14C AMS (accelerator mass spectrometry), and percent organic carbon (%TOC). Gas chromatography mass spectrometry (GC/ MS) of lipid extracts of SOM fractions provided data for PAH distribution histograms, compound weathering ratios, and alkylated and nonalkylated PAH concentrations. Inputs of biogenic plant carbon, PAH weathering, and declines in PAH concentrations are most evidentfor vegetated SOM fractions, particularly humin fractions. Sequestered PAH metabolites were also observed in vegetated humin. These results show that plant organic matter does impact PAH attenuation in both labile and refractory fractions of petroleum distillate waste.  相似文献   

5.
The role of composition and structure of sedimentary organic matter (SOM) in the sorption of hydrophobic organic compounds (HOCs) was investigated by spiking 13C-labeled phenanthrene onto six estuarine sediments known to vary in SOM content and character. After equilibration and HF treatment, 13C NMR cross polarization and stable carbon isotope analyses indicated that the amount of desorption-resistant phenanthrene was related to aromatic carbon content. Application of the 13C NMR spectral editing technique proton spin relaxation editing (PSRE) demonstrated that all samples consisted of a rapidly relaxing and a slowly relaxing component, further evidence that SOM can be described as a structurally heterogeneous sorbent. Further, comparison of corresponding control and spiked PSRE subspectra revealed that, for each of the six sediments, desorption-resistant phenanthrene had become associated almost exclusively with the rapidly relaxing component. In only two of the sediments were there even small amounts of phenanthrene discernible in the slowly relaxing component, which is signficant as it was not always true that aromatic carbon was concentrated exclusively in the rapidly relaxing phase. The implication of these findings is that not all aromatic fractions have the same affinity for phenanthrene and that some fractions may indeed have little affinity at all. These results were interpreted as indicative that rapidly relaxing aromatic carbon associated with either sediment-associated charcoal or diagenetic organic matter plays a controlling role in the sorption of HOCs. However, the exact manner in which this rapidly relaxing aromatic phase relates to models presented elsewhere remains unclear.  相似文献   

6.
A rhamnolipid biosurfactant mixture produced by P. aeruginosa UG2 and the surfactant Triton X-100 were tested for their effectiveness of enhancing the desorption of trifluralin, atrazine, and coumaphos from soils. Sorption of both surfactants by the soils was significant and adequately described by the Langmuir-type isotherm. Values of maximum sorption capacity (Qmax) and Langmuir constant (Klang) did not correlate with the amount of soil organic matter. Our results indicate that clay surfaces play an important role in the sorption of surfactants. When surfactant dosages were high enough to reach soil saturation and maintain an aqueous micellar phase, pesticide desorption was only enhanced. At dosages below soil saturation, surfactants sorbed onto soil, increasing its hydrophobicity and enhancing the sorption of the pesticides by a factor of 2. Similar values of water-soil partition coefficients (Ksol*) for aged and fresh added pesticides to soils indicate that the aging process used did not significantly after the capability of either surfactant to desorb the pesticides. A model able to estimate equilibrium distributions of organic compounds in soil-aqueous-micellar systems was tested against experimental results. The determined organic carbon partition coefficients, Koc values, indicate that, on a carbon normalized basis, sorbed Rh-mix is a much better sorbent of pesticides than TX-100 or soil organic matter. These results have significant implications on determining the effectiveness of surfactants to aid soil remediation technologies.  相似文献   

7.
Humin is a major fraction of soil organic matter and strongly affects the sorption behavior and fate of organic contaminants in soils and sediments. This study evaluated four different extraction methods for soil humins in terms of their organic carbon structural changes and the consequent effects on phenanthrene sorption. Solid-state 13C NMR demonstrated that 0.1 M NaOH exhaustively extracted humin and humin extracted with 6 M HF/HCl at 60 degrees C had a relatively high amount of aliphatic components as compared with 1 M HF-extracted humin. The treatment of 6 M HF/HCl at 60 degrees C greatly reduced carbohydrate components (50-108 ppm) from humin samples, i.e., more than 50% reduction. In addition, the humin from this 6 M HF/HCl treatment contained relatively more amorphous poly(methylene) domains than the humins extracted by other methods. With the respect to phenanthrene sorption, the linearity of sorption isotherm (N) and sorption affinity (Koc) varied markedly among the humin samples extracted by different methods. The NaOH exhaustively extracted humin had the most nonlinear sorption isotherm and the HF-extracted humin had the lowest Koc. It is concluded that humin samples from different extraction procedures exhibited substantial differences in their organic carbon structure and sorption characteristics, even though they were from the same soil. Therefore, one needs to be cautious when comparing the structural and sorption features of soil humins, especially when they are extracted differently. The 6 M HCl/HF extraction at elevated temperature is not encouraged, due to the modifications of chemical structure and physical conformation of organic matter.  相似文献   

8.
Values of the organic-carbon-based partition coefficient (Koc) have often been estimated using one-parameter linear free energy relationships (op-LFERs), which include both correlations between log Koc and log Kow, where Kow is the octanol-water partition coefficient, and op-LFERs that are based on first-order molecular connectivity indices. For chemicals with tendencies toward strong hydrogen-bonding or other specific interactions with the organic phase, however,these methods are notsufficientlyaccurate. Polyparameter LFERs (pp-LFERs) address these shortcomings by explicitly considering contributions toward free energy change from multiple kinds of molecular interactions with both water and bulk organic phases. This paper reviews pp-LFER theory and presents the development of a new pp-LFER for organic chemical partitioning with soil/sediment organic matter (SOM) using a data set of 356 carefully selected experimental values of log Koc for 75 chemicals, including apolar, monopolar, and bipolar compounds. The paradigm of representing SOM by a single pp-LFER is qualitatively supported by our results, and the set of coefficients for the regression log Koc= (1.10+/-0.10)E - (0.72+/-0.14)S + (0.15+/-0.15)A - (1.98+/-0.14)B + (2.28+/-0.14)V + (0.14+/-0.10) represents a proposed set of water-SOM-specific properties for estimating log Koc. The developed correlation outperformed other currently recommended approaches with the given Koc data set and also compared favorably against the use of new multiple class-specific op-LFER regressions. Overall, the pp-LFER approach is recommended over other current methods for the purpose of Koc estimation and especially for polar chemicals.  相似文献   

9.
Organic matter-mineral interactions greatly affect the fate of hydrophobic organic compounds (HOCs) in the environment. In the present study, the impact of organic matter-mineral interaction on sorption of phenanthrene (PHE) by the original and de-ashed humic acids (HAs) and humin (HM) was examined. After de-ashing treatment, the overall polarity of organic matter in HAs and HM consistently decreased. Differently, the surface polarity of HAs increased but that of HM decreased. No correlation between K(oc) values of PHE by all tested sorbents and their bulk polarity was observed due to inaccessibility of a portion of interior sorption domains. The inaccessibility of interior sorption domains in HAs and HM was partly due to the crystalline structure in organic matter as indicated by differential scanning calorimetric (DSC) and 13C NMR data and the interference from minerals. A good correlation between surface polarity of the original and de-ashed HAs and HMs and their K(oc) values for PHE indicated its importance in HOC sorption. Dissimilar changes in surface polarity of HAs and HM after de-ashing treatment can be ascribed to the distinct interactions between organic matter and minerals. The solid-state 13C NMR, XPS, and elemental composition data of all tested sorbents revealed that a larger fraction of O atoms in HAs were involved in organic matter-mineral interaction as compared to HM. Results of this work highlight the importance of soil organic matter (SOM)-mineral interactions, surface polarity, and microscaled domain arrangement of SOM in HOC sorption.  相似文献   

10.
Nonhydrolyzable organic carbon (NHC) and sorption isotherms of phenanthrene (Phen) on six size-fractionated NHC fractions in two sediments from the Pearl River and Estuary, South China, were investigated. It was found that NHC including ancient organic carbon, black carbon, resistant aquatic organic carbon, and aged soil organic carbon consists mainly of aliphatic and aromatic carbon using 13C nuclear magnetic resonance spectroscopy. The sorption isotherms of Phen by the size-fractionated NHC fractions are nonlinear and are well-fitted to the Freundlich model. For the estuary sediment, the NHC contents and the organic carbon-normalized distribution coefficients (Koc) in the size fractions increase with decreasing particle size. The clay NHC fraction contributes to 70% of the Phen sorption by the bulk NHC isolate. However, for the contaminated river sediment, the NHC contents and the Koc values exhibit no regular variations among the size fractions. The Phen sorption capacities on the size-fractionated NHC fractions of the two sediments are significantly related to their H/C ratios and aliphatic carbon, but negatively to aromatic carbon. The fine-particle NHC fractions with high aliphatic carbon and H/C ratio play a very important role in the sorption, transport, and fate of Phen by the investigated sediments.  相似文献   

11.
Partition coefficients for the binding affinities of atrazine to 16 different humic materials were determined by the ultrafiltration HPLC technique. Sources included humic acids (HA), fulvic acids (FA), and combined humic and fulvic fractions (HF) from soil, peat, and coal humic acid. Each of the humic materials was characterized by elemental composition, molecular weight, and composition of main structural fragments determined by 13C solution-state NMR. The magnitude of K(OC) values varied from 87 to 575 L/kg of C, demonstrating relatively low binding affinity of humic substances (HS) for atrazine. On the basis of the measured K(OC) values, the humic materials can be arranged in the following order: coal HA approximately = gray wooded soil HA > chernozemic soil HA and HF > sod-podzolic soil HA approximately = peat HF > sod-podzolic soil FA > peat dissolved organic matter. The magnitude of the K(OC) values correlated strongly with the percentage of aromatic carbon in HS samples (r = 0.91). The hydrophobic binding was hypothesized as the key interaction underlying the binding of atrazine to HS.  相似文献   

12.
The effects of fallow agriculture on soil organic matter (SOM) dynamics and CO2 emissions were assessed in the tropical Andean páramo ecosystem. Possible changes during the cultivation-fallow cycle were monitored in four areas of the Quebrada Pi?uelas valley (Venezuela). Uncultivated soils and plots at different stages of a complete cultivation--fallow cycle were incubated, and SOM mineralization kinetics was determined. Soils exhibited a low SOM mineralization activity, total CO2 evolved never reaching 3% of soil carbon, pointing to a stabilized SOM. Potential soil CO2 effluxes differed significantly according to their plot aspect: northeast (NE)-aspect soils presented higher CO2 effluxes than southwest (SW)-aspect soils. Soil CO2 emissions decreased after ploughing as compared to virgin páramo; low CO2 effluxes were still observed during cropping periods, increasing progressively to reach the highest values after 4-5 y of fallow. In all cases, experimental C mineralization data was fitted to a double exponential kinetic model. High soil labile C pool variability was observed, and two different trends were identified: NE-oriented soils showed more labile C and a wider range of values than SW-facing soils. Labile C positively correlated with CO2 effluxes and negatively with its instantaneous mineralization rate. The instantaneous mineralization rate of the recalcitrant C pool positively correlated with %C evolved as CO2 and negatively with soil C and Al2O3 contents, suggesting the importance of aluminum on SOM stability. The CO2 effluxes from these ecosystems, as well as the proportion of soil C released to the atmosphere, seem to depend not only on the size of the labile C pool but also on the accessibility of the more stabilized SOM. Therefore, fallow agriculture produces moderate changes in SOM quality and temporarily alters the CO2 emission capacity of these soils.  相似文献   

13.
Oxidative coupling processes in subsurface systems comprise a form of natural contaminant attenuation in which hydroxylated aromatic compounds (HACs) are incorporated into soil/sediment organic matter matrices. Here we describe the oxidative coupling of phenol catalyzed by horseradish peroxidase (HRP) in systems containing two geosorbents having organic matter of different composition; specifically Chelsea soil, a near-surface geologically young soil having a predominantly humic-type soil/sediment organic matter (SOM) matrix, and Lachine shale, a diagenetically older natural material having a predominantly kerogen-type SOM matrix. It was found that each of these two different types of natural geosorbents increased the formation of non-extractable coupling products (NEPs) over that which occurred in solids-free systems. The extent of coupling was higher in the systems containing humic-type Chelsea SOM than in those containing kerogen-type Lachine SOM. It was observed that HRP inactivation by free radical attack was significantly reduced in the presence of each geosorbent. A rate model was developed to facilitate quantitative evaluation and mechanistic interpretation of such coupling processes. Experimental rate measurements revealed thatthe greater extent of reaction observed in the presence of Chelsea soil than in the presence of Lachine shale can be attributed to two factors: (i) more effective protection of HRP from inactivation by the Chelsea SOM and (ii) the greater reactivity of Chelsea SOM with respect to cross-coupling. Interrelationships among enzyme protection, cross-coupling reactivity, and SOM chemistry are discussed.  相似文献   

14.
We extracted the acid-soluble portion of municipal biosolids, fractionated it by both molecular weight (MW) and hydrophobicity, and used various solid-state nuclear magnetic resonance (NMR) methods and diffuse-reflectance infrared Fourier transform (DRIFT) spectroscopy to characterize the fractions. Spectroscopic characterization of the MW components of the biosolids-derived organic matter fractions revealed the presence of functionally distinct groups of compounds. Quantitative 13C NMR, CH spectral editing, and several two-dimensional NMR experiments show that the high-MW hydrophilic fraction in particular is structurally simple, consisting predominantly of N-acetylated polysaccharides, perhaps derived from bacterial peptidoglycans. In the high-MW hydrophobic fraction, aromatic compounds were present in addition to the N-acetylated polysaccharides. Infrared spectroscopy confirmed that hydrophilic fractions were dominated by carbohydrates and indicated that the lower-MW fractions lacked amide moieties. Complementary interpretations of the DRIFT and NMR spectra improved our knowledge of the components separated by this fractionation scheme, allowing better characterization of biosolids organic matter. Moreover, fractionation based on both MW and hydrophobicity may prove useful in detailed characterization of the structure of biosolids-derived organic matter and other similarly heterogeneous natural organic matter in soils and sediments.  相似文献   

15.
Plant cuticular waxes are essential barriers that regulate the transport of water and organic molecules to intact cuticular membranes. They also compose a significant fraction ofthe recalcitrant aliphatic components of soil organic matter (SOM). In this study, we examined the sorption and desorption of three polycyclic aromatic hydrocarbons (PAHs), naphthalene (NAPH), phenanthrene (PHEN), and pyrene (PYR), by cuticular waxes of green pepper (Capsicum annuum) that had been reconstituted by loading them onto montmorillonite (at four different loadings). The reconstituted wax samples, with and without sorbed PAHs, were characterized by solid-state 13C NMR to supply the evidence of melting transition. The sorption isotherms fit well to a Freundlich equation. Sorption isotherms were practically linear except for that of PYR sorption to the low-load wax-montmorillonite sample. The organic-carbon-normalized sorption coefficients (Koc) depended on PAH's lipophilicity (e.g., octanol-water partition coefficient) and increased with increasing wax-load on clay. Desorption was dependent on PAH's molecular sizes and sorbed amounts and on the wax load of the clay. Desorption hysteresis was observed only at high loads of NAPH and PHEN, and it decreased with both increasing wax load and molecular size (i.e. NAPH > PHEN > PYR). Contributing to hysteresis, the melting transition of the reconstituted waxes after sorbing the PAHs was confirmed by solid-state 13C NMR data. Upon adsorption, the intensity of the NMR peak at 29 ppm (attributed to mobile amorphous paraffinic domains) increased, and a peak at 167 ppm (-COOH) appeared, reflecting the transition of solid amorphous to mobile amorphous domains in the reconstituted waxes. The intensity of melting induced by PAH adsorption decreased with increasing PAH molecular size.  相似文献   

16.
Phenanthrene sorption to soil humic acid and different humin fractions   总被引:13,自引:0,他引:13  
This study was undertaken to provide an insight into the effect of heterogeneous soil organic matter (SOM) on the sorption of phenanthrene. Humic acid (HA) and humin were extracted from a peat soil. Humin was further fractionated into bound-humic acid (BHA), lipid, and insoluble residue (IR) fractions. Heterogeneous natures of these fractions were characterized by elemental analysis, ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and solid-state 13C NMR. Aliphaticity of the fractions followed the order lipid >BHA > HA > IR, while the polarity order was IR > BHA> HA > lipid. Sorption of phenanthrene on these fractions fitted the Freundlich equation, suggesting that phenanthrene sorption isotherms of lipid were almost linear (N = 0.993), while those of HA, BHA, and IR were nonlinear, with N values ranging from 0.723 to 0.910. The N values followed the order lipid > HA > BHA > IR and were significantly correlated inversely with their polarities (p < 0.05). Organic carbon-normalized sorption coefficients (K(FOC)) were independent of aliphatic or aromatic contents of the SOM fractions. The results suggested that SOM, especially for the humin fractions, was highly heterogeneous in terms of elemental composition, structure, and polarity. Such heterogeneity was considered to be responsible forthe nonlinear sorption of phenanthrene.  相似文献   

17.
In soil and water, ferrihydrite frequently forms in the presence of dissolved organic matter. This disturbs crystal growth and gives rise to coprecipitation of ferrihydrite and organic matter. To compare the chemical fractionation of organic matter during coprecipitation with the fractionation involved in adsorption onto pristine ferrihydrite surfaces we prepared ferrihydrite-organic matter associations by adsorption and coprecipitation using (i) a forest-floor extract or (ii) a sulfonated lignin. The reaction products were studied by (13)C CPMAS NMR, FTIR, and analysis of hydrolyzable neutral polysaccharides. Relative to the original forest-floor extract, the ferrihydrite-associated organic matter was enriched in polysaccharides, especially when adsorption took place. Moreover, mannose and glucose were bound preferentially to ferrihydrite, while fucose, arabinose, xylose, and galactose accumulated in the supernatant. This fractionation of sugar monomers was more pronounced during coprecipitation and led to an enhanced ratio of (galactose + mannose)/(arabinose + xylose). Experiments with lignin revealed that the ferrihydrite-associated material was enriched in its aromatic components but had a lower ratio of phenolic C to aromatic C than the original lignin. A compositional difference between the adsorbed and coprecipitated lignin is obvious from a higher contribution of methoxy C in the coprecipitated material. Coprecipitated organic matter may thus differ in amount and composition from adsorbed organic matter.  相似文献   

18.
The first paper of this series reported that soil/sediment organic matter (SOM) can be fractionated into four fractions with a combined wet chemical procedure and that kerogen and black carbon (BC) are major SOM components in soil/sediment samples collected from the industrialized suburban areas of Guangzhou, China. The goal of this study was to determine the sorptive properties forthe four SOM fractions for organic contaminants. Sorption isotherms were measured with a batch technique using phenanthrene and naphthalene as the sorbates and four original and four Soxhlet-extracted soil/sediment samples, 15 isolated SOM fractions, and a char as the sorbents. The results showed that the sorption isotherms measured for all the sorbents were variously nonlinear. The isolated humic acid (HA) exhibited significantly nonlinear sorption, but its contribution to the overall isotherm nonlinearity and sorption capacity of the original soil was insignificant because of its low content in the tested soils and sediments. The particulate kerogen and black carbon (KB) fractions exhibited more nonlinear sorption with much higher organic carbon-normalized capacities for both sorbates. They dominate the observed overall sorption by the tested soils and sediments and are expected to be the most important soil components affecting bioavailability and ultimate fate of hydrophobic organic contaminants (HOCs). The fact that the isolated KB fractions exhibited much higher sorption capacities than when they were associated with soil/sediment matrixes suggested that a large fraction of the particulate kerogen and BC was not accessible to sorbing HOCs. Encapsulation within soil aggregates and surface coverage by inorganic and organic coatings may have caused large variations in the accessibility of fine kerogen and BC particles to HOCs and hence lowered the sorption capacity of the soil. This variability posts an ultimate challenge for precisely predicting HOC sorption by soils from the contents of different types of SOM.  相似文献   

19.
Elucidation of molecular-level interactions controlling the sorption of organic compounds in soils is of major theoretical and practical interest. Sorption of pi-electron donor compounds, pentamethylbenzene (PMB), naphthalene (NAPH), and phenanthrene (PHEN), in a number of soils was found to increase with decreasing pH in the range of approximately pH 2.5-7. This behavior could not be attributed to pH-dependent alteration of the hydrophobic character of humic substances, pi-H-bonding, interaction with mineral surfaces, interaction with black carbons, solute coplanarity, or pH effects on solute activity coefficient. No significant effect of pH was observed for non-pi-donor hydrophobic compounds, whether planar or not: trans-1,2-dichlorocyclohexane (DCCH), hexachloro-1,3-butadiene (HCBD), 1,2,4-trichlorobenzene (TCB), 2,2',5,5'-tetrachlorobiphenyl, and 3,3',4,4'-tetrachlorobiphenyl. The opposite pH effect was observed for 2-nonanol and 2-nonanone, which are non-pi-donors, but capable of H-bonding. Also, no pH-dependent sorption was observed between the pi-donor PHEN and alumina, a model inorganic surface. We propose that the pi-donor solutes interact with pi-acceptor sites in soil organic matter (SOM), including aromatic rings with multiple carboxyl groups, aromatic amines, or heteroaromatic amines. The pi-acceptor ability of such aromatic moieties would increase with protonation. pi-pi Interactions between PMB, NAPH, and PHEN, and model SOM acceptors, 1,3,5-benzenetricarboxylic acid (BTA), 1,4,5,8-naphthalenetetracarboxylic acid (NTA), and pyridine (PY) in methanol and methanol-water, were verified by the appearance of pH-dependent upfield 1H NMR chemical shifts induced by ring current effects. UV/vis spectra showed pH-dependent charge-transfer bands for various donors with NTA. No NMR shifts or charge-transfer bands were found for nondonor compounds paired with the model acceptors.  相似文献   

20.
Contaminant-soil interaction studies have indicated that physical conformation of organic matter atthe solid-aqueous interface is important in governing hydrophobic organic compound (HOC) sorption. To testthis, organo-clay complexes were constructed by coating montmorillonite and kaolinite with peat humic acid (PHA) in Na+ or Ca2+ dominated solutions with varying pH and ionic strength values. The solution conditions encouraged the dissolved PHA to adopt a "coiled" or "stretched" conformation prior to interacting with the clay mineral surface. Both kaolinite and montmorillonite organo-clay complexes exhibited higher phenanthrene sorption (Koc values) with decreasing pH, indicating that the coiled configuration provided more favorable sorption conditions. Evidence from 1H high-resolution magic angle spinning (HR-MAS) nuclear magnetic resonance (NMR) indicated that polymethylene groups were prevalent at the surface of the organo-clay complexes and may enhance sorptive interactions. Preferential sorption of polymethylene groups on kaolinite and aromatic compounds on montmorillonite may also contribute to the difference in phenanthrene sorption by PHA associated with these two types of clay. This study demonstrates the importance of solution conditions in the sorption of nonionic, hydrophobic organic contaminants and also provides evidence for the indirect role of clay minerals in sorption of contaminants at the soil-water interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号