首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simulating the influence of snow on the fate of organic compounds   总被引:2,自引:0,他引:2  
Snow scavenging, a seasonal snowpack, and a dynamic water balance are incorporated in a non-steady-state generic multimedia fate model in order to investigate the effect of snow on the magnitude and temporal variability of organic contaminant concentrations in various environmental media. Efficient scavenging of large nonpolar organic vapors and particle-bound organic chemicals by snow can lead to reduced wintertime air concentrations and incorporation in the snowpack. The snow cover functions as a temporary storage reservoir that releases contaminants accumulating over the winter during a short melt period, resulting in temporarily elevated concentrations in air, water, and soil. The intensity of these peaks increases with the length of the snow accumulation period. Organic chemicals of sufficient volatility (log KOA < 9; e.g., light polychlorinated biphenyls) can volatilize from the snowpack, resulting in springtime concentration maxima in the atmosphere. The behavior of fairly water-soluble chemicals during snowmelt depends on their relative affinity for the newly formed liquid water phase and the rapidly diminishing ice surface-quantitatively expressed by their interface-water partition coefficient (KIW). Chemicals with a preference for the dissolved phase (low KIW; e.g., pentachlorophenol) can become enriched in the first meltwater fractions and experience a temporary concentration peak in lakes and rivers. Organic chemicals that are neither volatile enough to evaporate from the snowpack nor sufficiently water soluble to dissolve in the meltwater (e.g., polybrominated diphenyl ethers) sorb to the particles in the snowpack. These particles may be sufficiently contaminated to constitute the major input route to the terrestrial environment upon release during snowmelt. Because wintertime deposition to the snowpack may be higher than to a non-snow covered surface, this can result in higher soil concentrations of persistent organic contaminants in the long term. The potential ecotoxicological significance of peak exposures demands a better understanding of the role of snow in the fate of organic contaminants.  相似文献   

2.
Snow and ice have been implemented in a global multimedia box model to investigate the influence of these media on the environmental fate and long-range transport (LRT) of semivolatile organic compounds (SOCs). Investigated compounds include HCB, PCB28, PCB180, PBDE47, PBDE209, alpha-HCH, and dacthal. In low latitudes, snow acts as a transfer medium taking up chemicals from air and releasing them to water or soil during snowmelt. In high latitudes, snow and ice shield water, soil, and vegetation from chemical deposition. In the model version including snow and ice (scenario 2), the mass of chemicals in soil in high latitudes is between 27% (HCB) and 97% (alpha-HCH) of the mass calculated with the model version without snow and ice (scenario 1). Amounts in Arctic seawater in scenario 2 are 8% (alpha-HCH) to 21% (dacthal) of the amounts obtained in scenario 1. For all investigated chemicals except alpha-HCH, presence of snow and ice in the model increases the concentration in air by a factor of 2 (HCB)to 10 (PBDE209). Because of reduced net deposition to snow-covered surfaces in high latitudes, LRT to the Arctic is reduced for most chemicals whereas transport to the south is more pronounced than in scenario 1 ("southward shift"). The presence of snow and ice thus considerably changes the environmental fate of SOCs.  相似文献   

3.
4.
5.
Even without access to the electrical grid, a flow-through sampler (FTS) can collect gaseous and particle-bound semivolatile organic compounds (SOCs) from large volumes of air by turning into the wind and having the wind blow through a porous sampling medium. To test its performance under field conditions, a FTS and a traditional pumped high volume air sampler, both using polyurethane foam (PUF) as sampling medium, were codeployed at the campus of the University of Toronto Scarborough from August 2006 to June 2007. Quantitative relationships between the wind speed outside the sampler and after passage through the PUF were established and allow the accurate estimation of sampling volumes under conditions of low and high wind speed. Polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were quantified in the samples taken by both air samplers. Separate analysis of seven PUF disks arranged sequentially within the FTS, confirm that even relatively volatile SOCs do not experience serious break-through. Theoretical plate number analysis of the break-through curves yields an understanding of the effect of temperature and wind speed on FTS sampling efficiency, and reveals different behavior of gaseous and particle-bound-compounds on the PUF. Air concentrations of PCBs and PAHs obtained with the FTS compare favorably with those obtained by averaging the concentrations of several 24 h active high volume samples taken during the same time period.  相似文献   

6.
7.
8.
9.
The partitioning behavior of a set of diverse SOCs on two and three component mixtures of aerosols from different sources was studied using smog chamber experimental data. A set of SOCs of different compound types was introduced into a system containing a mixture of aerosols from two or more sources. Gas and particle samples were taken using a filter-filter-denuder sampling system, and a partitioning coefficient Kp was estimated using Kp = Cp/(CgTSP). Particle size distributions were measured using a differential mobility analyzer and a light scattering detector. Gas and particle samples were analyzed using GCMS. The aerosol composition in the chamber was tracked chemically using a combination of signature compounds and the organic matter mass fraction (f(om)) of the individual aerosol sources. The physical nature of the aerosol mixture in the chamber was determined using particle size distributions, and an aggregate Kp was estimated from theoretically calculated Kp on the individual sources. Model fits for Kp showed that when the mixture involved primary sources of aerosol, the aggregate Kp of the mixture could be successfully modeled as an external mixture of the Kp on the individual aerosols. There were significant differences observed for some SOCs between modeling the system as an external and as an internal mixture. However, when one of the aerosol sources was secondary, the aggregate model Kp required incorporation of the secondary aerosol products on the preexisting aerosol for adequate model fits. Modeling such a system as an external mixture grossly overpredicted the Kp of alkanes in the mixture. Indirect evidence of heterogeneous, acid-catalyzed reactions in the particle phase was also seen, leading to a significant increase in the polarity of the resulting aerosol mix and a resulting decrease in the observed Kp of alkanes in the chamber. The model was partly consistent with this decrease but could not completely explain the reduction in Kp because of insufficient knowledge of the secondary organic aerosol composition.  相似文献   

10.
To estimate the emissions of anthropogenic semivolatile organic compounds (SOCs) from East Asia and to identify unique SOC molecular markers in Asian air masses, high-volume air samples were collected on the island of Okinawa, Japan between 22 March and 2 May 2004. Contributions from different source regions (China, Japan, the Koreas, Russia, and ocean/local) were estimated by use of source region impact factors (SRIFs). Elevated concentrations of hexachlorobenzene (HCB), hexachlorcyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs), and particulate-phase polycyclic aromatic hydrocarbons (PAHs) were attributed to air masses from China. A large proportion of the variation in the current-use pesticides, gas-phase PAHs, and polychlorinated biphenyl (PCB) concentrations was explained by meteorology. Chlordanes showed a technical mixture profile and similar concentrations regardless of source region. alpha/gamma HCH and trans/cis chlordane ratios did not vary significantly with different source regions and had regional averages of 2.5 +/- 1.0 and 1.2 +/- 0.3, respectively. Particulate-phase PAH concentrations were significantly correlated (p value < 0.05) with other incomplete combustion byproduct concentrations, including elemental mercury (Hg0), CO, NOx, black carbon, submicrometer aerosols, and SO2. By use of measured PAH, CO, and black carbon concentrations and estimated CO and black carbon emission inventories, the emission of six carcinogenic particulate-phase PAHs was estimated to be 1518-4179 metric tons/year for Asia and 778-1728 metric tons/year for China, respectively. These results confirm that East Asian outflow contains significant emissions of carcinogenic particulate-phase PAHs.  相似文献   

11.
A controlled field experiment (CFE) methodology with a filter/sorbent sampler was used to minimize artifact effects when measuring values of the gas/particle (G/P) partitioning constant (Kp, m3 microg(-1)) for semivolatile organic compounds (SOCs) in the atmosphere. CFE sampling was conducted at three different locations (Beaverton, OR; Denver, CO; and Hills, IA). Kp values were measured for a series of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated dibenzodioxins and dibenzofurans (PCDD/Fs). To examine the possible effects on the G/P partitioning of the amounts of organic material (om) phase, organic carbon (OC), and elemental carbon (EC) in the sampled particulate material, the measured Kp values were normalized by the aerosol mass fractions f(om), f(OC), and f(EC) according to Kp/ f(om), Kp/f(OC), and Kp/f(EC). Using a log-log format, the resulting normalized values were all found to be more highly correlated with the subcooled liquid vapor pressure p(L)o than were the unnormalized Kp values. For the PAHs,the one-parameter model assuming Kp = Kp,OC f(OC) yielded only slightly less variability in the predicted Kp values than did the one-parameter model Kp = Kp,EC f(EC). The two-parameter model Kp = Kp,OC f(OC) + Kp,EC f(EC) was found to provide only small improvements over each of the one-parameter models. Overall, the data are more consistent with an absorptive mechanism of partitioning to the particulate material but do not rule out some role for adsorption to particle surfaces. The data suggest that small amounts of organic carbon (f(OC) approximately 0.02) can have significant effects on the G/P partitioning of SOCs.  相似文献   

12.
Current theory of the uptake of semivolatile organic compounds in passive air samplers (PAS) assumes uniform chemical distribution and no kinetic resistance within the passive sampling media (PSM) such as polystyrene-divinylbenzene resin (XAD) and polyurethane foam (PUF). However, these assumptions have not been tested experimentally and are challenged by some recently reported observations. To test the assumptions, we performed kinetic uptake experiments indoors using cylindrical PSM that had been concentrically segmented into three layers. Both XAD and PUF were positioned in the same type of sampler housing to eliminate the variation caused by the different housing designs, which enabled us to quantify differences in uptake caused by the properties of the PSM. Duplicated XAD (PUF) samples were retrieved after being deployed for 0, 1 (0.5), 2 (1), 4 (2), 8 (4), 12 (8), and 24 (12) weeks. Upon retrieval, the PSM layers were separated and analyzed individually for PCBs. Passive sampling rates (R) were lower for heavier PCB homologues. Within a homologue group, R for XAD was higher than that for PUF, from which we infer that the design of the "cylindrical can" housing typically used for XAD PAS lowers the R compared to the "double bowl" shelter commonly used for PUF-disk PAS. Outer layers of the PSM sequestered much higher levels of PCBs than inner layers, indicative of a kinetic resistance to chemical transfer within the PSM. The effective diffusivities for chemical transfer within PSM were derived and were found negatively correlated with the partition coefficients between the PSM and air. Based on the results, we conclude that the PSM-side kinetic resistance should be considered when investigating factors influencing R and when deriving R based on the loss of depuration compounds.  相似文献   

13.
14.
15.
16.
Semivolatile compounds present special analytical challenges not met by conventional methods for analysis of ambient particulate matter (PM). Accurate quantification of PM-associated organic compounds requires validation of the laboratory procedures for recovery over a wide volatility and polarity range. To meet these challenges, solutions of n-alkanes (nC12-nC40) and polycyclic aromatic hydrocarbons PAHs (naphthalene to benzo[ghi]perylene) were reduced in volume from a solvent mixture (equal volumes of hexane, dichloromethane and methanol), to examine recovery after reduction in volume. When the extract solution volume reached 0.5 mL the solvent was entirely methanol, and the recovery averaged 60% for n-alkanes nC12-nC25 and PAHs from naphthalene to chrysene. Recovery of higher MW compounds decreased with MW, because of their insolubility in methanol. When the walls of the flasks were washed with 1 mL of equal parts hexane and dichloromethane (to reconstruct the original solvent composition), the recovery of nC18 and higher MW compounds increased dramatically, up to 100% for nC22-nC32 and then slowly decreasing with MW due to insolubility. To examine recovery during extraction of the components of the High Capacity Integrated Gas and Particle Sampler, the same standards were used to spike its denuders and filters. For XAD-4 coated denuders and filters, normalized recovery was >95% after two extractions. Recovery from spiked quartz filters matched the recovery from the coated surfaces for alkanes nC18 and larger and for fluoranthene and larger PAHs. Lower MW compounds evaporated from the quartz filter with the spiking solvent. This careful approach allowed quantification of organics by correcting for volatility- and solubility-related sample preparation losses. This method is illustrated for an ambient sample collected with this sampler during the Texas Air Quality Study 2000.  相似文献   

17.
Emissions of organic compounds from landfills depend on the fate of the compounds inside the landfills. This field study was used to investigate the fate in landfills of organic compounds having different physical, chemical, and biological characteristics. For this purpose, a pilot-scale landfill was constructed containing 540 m3 of ordinary household waste, 12 organic compounds were added at the top of the landfill, and leachate and landfill gas samples were continually collected and analyzed. The fate of each compound was theoretically estimated from literature data on the processes which significantly affect the compounds: sorption, dissociation, evaporation, and transformation. These processes could be described by the octanol/water coefficients, Kow, the acid dissociation constants, pKa, the Henry's law constants, H, and the potential of the compounds to be biologically transformed. The use of a ranking score system was suggested as a tool for interpreting the predicted fate of specific compounds caused by several simultaneous processes. A good correlation could be found between the measured emissions and the theoretically evaluated fate. It was concluded that the construction of a pilot-scale landfill is a useful method for studying simultaneous processes in landfills and that the emissions of organic compounds from landfills can be qualitatively predicted from literature data.  相似文献   

18.
Air mass origin as determined by back trajectories often aids in explaining some of the short-term variability in the atmospheric concentrations of semivolatile organic contaminants. Airsheds, constructed by amalgamating large numbers of back trajectories, capture average air mass origins over longer time periods and thus have found use in interpreting air concentrations obtained by passive air samplers. To explore some of their key characteristics, airsheds for 54 locations on Earth were constructed and compared for roundness, seasonality, and interannual variability. To avoid the so-called "pole problem" and to simplify the calculation of roundness, a "geodesic grid" was used to bin the back-trajectory end points. Departures from roundness were seen to occur at all latitudes and to correlate significantly with local slope but no strong relationship between latitude and roundness was revealed. Seasonality and interannual variability vary widely enough to imply that static models of transport are not sufficient to describe the proximity of an area to potential sources of contaminants. For interpreting an air measurement an airshed should be generated specifically for the deployment time of the sampler, especially when investigating long-term trends. Samples taken in a single season may not represent the average annual atmosphere, and samples taken in linear, as opposed to round, airsheds may not represent the average atmosphere in the area. Simple methods are proposed to ascertain the significance of an airshed or individual cell. It is recommended that when establishing potential contaminant source regions only end points with departure heights of less than ~700 m be considered.  相似文献   

19.
Accurate knowledge of the air-water Henry's law constant (H) is crucial for understanding an organic compound's environmental behavior. The inert gas stripping (IGS) method, widely used to measure H of semivolatile organic compounds (SOCs), may yield erroneously high values for compounds with a high water surface adsorption coefficient, K(IA), because chemical adsorbed to the bubble surface may be transferred to the head space upon bursting at the top of the stripping column. Experiments with alkanols of variable chain length identified a K(IA) threshold of approximately 10(-3) m, above which IGS is susceptible to this artifact. Most SOCs are predicted to have K(IA) values well above that threshold. IGS-determined H-values for chemicals belonging to various groups of SOCs were evaluated by comparison with H-values either calculated from reliable vapor pressure and solubility data or derived from data compilations that achieve thermodynamic consistency through optimized adjustment of measured physical-chemical property data. The investigated deviations were found to be generally consistent with what would be expected from a surface adsorption artifact. Namely, the apparent bias in IGS-determined H-values, if it occurs, (1) is positive, (2) increases with increasing size of an SOC, and (3) increases with decreasing temperature. It generally is also of a magnitude predicted using estimated K(IA) values. However, different studies display different K(IA) threshold values, beyond which the artifact becomes notable, and some studies appear to succeed in avoiding the artifact altogether. Whereas the use of aerosol traps cannot explain the absence of a surface adsorption artifact, it may be related to higher flow rates used by some investigators. For large compounds or those with more than one functional group, the predicted deviation is too large when compared to observations, suggesting that the estimated K(IA) values for those compounds are too high. A full quantitative understanding of the artifact requires more accurate predictions of the adsorption of SOCs to the water surface.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号