首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
PVA-TEOS/PAN渗透汽化膜的制备及其乙酸乙酯脱水   总被引:2,自引:0,他引:2  
以聚丙烯腈(PAN)中空纤维超滤膜为底膜,以聚乙烯醇(PVA)和正硅酸乙酯(TEOS)的混合液为涂膜液,采用溶胶-凝胶法制备了PVA-TEOS/PAN渗透汽化复合膜,并用于乙酸乙酯脱水. FT-IR和XRD谱图证实复合膜表层中由于PVA与TEOS的交联反应而形成了Si?O?C共价键,且PVA的结晶度下降. 另外,利用静态接触角测量对复合膜表层的亲水性进行了表征. 考察了复合膜在乙酸乙酯水溶液中的溶胀性能及涂膜液中TEOS含量和料液温度与浓度对PVA-TEOS/PAN复合膜分离性能的影响. 结果表明,TEOS的加入有效降低了复合膜在乙酸乙酯水溶液中的溶胀度,使其对水具有较好的分离选择性. 40℃下,涂膜液中TEOS质量含量分别为5%和30%的PVA-TEOS/PAN复合膜分离98%的乙酸乙酯水溶液时,其分离因子分别为2830和4448,渗透通量分别为49.4和41.4 g/(m2×h).  相似文献   

2.
利用共混交联法将马来酸酐(MAH)加入聚乙烯醇(PVA)和聚乙烯吡咯烷酮(PVP)混合溶液中制备PVA/PVP膜.考察了膜的组成、料液中水质量分数和温度对渗透汽化分离性能的影响.结果表明,在V(PVA):V(PVP)= 8:2、水质量分数为3.9%的2-甲基四氢呋喃(2-MeTHF)溶液和最佳温度为68℃条件下,渗透通...  相似文献   

3.
依据溶度参数原则和分离甲基叔丁基醚(MTBE)/甲醇(MeOH)混合物的选择渗透性,选择了聚乙烯醇(PVA)为复合膜的分离层材料,聚丙烯腈(PAN)、醋酸纤维素(CA)系列为支撑层的膜材料.初步讨论了膜材料和复合膜结构对分离性能的影响,给出了用不同成膜工艺制备的膜性能,获得了可用于有机/有机体系分离的性能优良的PVA/PAN和PVA/CA复合膜,以及CTA中空纤维渗透汽化膜.  相似文献   

4.
制备了以聚乙烯醇(PVA)、磷酸酯化聚乙烯醇(PPVA)和活性分离层的PVA/PAN、PPVA/PAN渗透汽化复合膜并用于乙醇-水恒沸混合物的分离。考察了热处理条件对复合膜分离性能及吸附性能的影响。结果表明,复合膜的分离性能主要是由热处理温度决定的,并且,PPVA/PAN复合膜比PVA/PAN复合膜具有更好的分离性能。确定了最佳的热处理条件,对于PVA/PAN复合膜:在403K下,热处理时间不小于4h,对于PPAV/PAN复合膜:在423K下,热处理时间不小于2h。  相似文献   

5.
用十六烷基三甲基溴化铵(CTAB)对膨润土进行柱撑改性,并对改性前后的膨润土进行吸附实验及红外测定。将改性后膨润土置于填充聚醚共聚乙酰胺(PEBAX)聚合物溶液中,以聚偏氟乙烯(PVDF)超滤膜为支撑膜,制备复合膜,考察复合膜在模拟汽油(噻吩/正庚烷)中的溶胀性能,并进行渗透汽化实验,研究膜的分离性能。利用SEM考察膜的形貌结构。结果发现:30℃下,溶胀度随噻吩质量分数的增加而升高,15 min后达溶胀平衡,并且在填充量为20%时最大。渗透汽化结果表明:在料液温度为30℃,噻吩质量分数为1 100μg/g时,CTAB填充量为20%的PEBAX/PVDF复合膜的渗透通量和硫富集因子分别为2.81 kg/(m2·h)和4.65。  相似文献   

6.
将不同材料分别用作复合膜的分离层和支撑体,是制备优良选择渗透性分离膜的重要方法之一.采用浇铸工艺将具有亲水性和高分离因子的聚乙烯醇(PVA)涂覆在高度透水性的反渗透(RO)聚酰胺(PA)膜表面,制备成渗透汽化(PV)分离有机物水混合物的PVA/PA复合膜.扫描电子显微镜(SEM)和原子力显微镜(AFM)以及红外光谱分析表明,PVA-PA层结构为一体化,膜表面光滑、致密,分离层上的微囊高度下降到4 nm左右.可以认为膜的优异传质性能取决于良好微结构包括PVA的化学交联和膜的结构形貌.铸膜液中PVA和交联剂的浓度以及热处理条件对复合膜分离性能的影响是明显的.这一新型的复合膜在环境温度下PV分离异丙醇(IPA)/水混合物的渗透通量(J)接近100 g·m-2·h-1,渗透物中的水含量(CP-H2O)大于99.5%.  相似文献   

7.
全氟磺酸改性聚乙烯醇渗透汽化膜分离乙酸乙酯-水溶液   总被引:1,自引:1,他引:1  
以聚乙烯醇(PVA)为原材料,全氟磺酸(PFSA)为共混改性材料,以聚丙烯腈(PAN)中空纤维超滤膜为底膜制备了PVAfPAN、PVA-PFSA/PAN复合膜,并用于乙酸乙酯脱水.考察了共混涂膜液中PVA、PFSA配比,交联剂酒石酸(Tat)用量以及原料液温度与浓度对PVA、PAN、PVA-PFSA、PAN复合膜分离件能的影响.实验结果表明,Tac交联的PVA,PAN、PVA-PFSA/PAN复合膜均对水具有较好的分离选择性.共混涂膜液中PVA/PFSA质量比为1/1、Tac/PVA质量比为l/5时所制备的PVA-PFSA/PAN复合膜渗透汽化分离性能最佳.40下℃此复合膜用于分离98%(wt)的乙酸乙酯水溶液时,其渗透通量和分离因予分别为81.1 g·m-2·h-1和1890.同样条件下,与交联PVA/PAN复合膜相比,交联PVA-PFSA/PAN复合膜的渗透通量显著提高.  相似文献   

8.
对自制改性聚乙烯醇(PVA)/聚丙烯腈(PAN)共混膜渗透汽化分离异丙醇-水溶液体系的性能进行了研究。分别考察了操作温度、下游表压以及异丙醇浓度对PVA/PAN共混膜渗透蒸发分离性能影响。结果表明,随着操作温度及异丙醇浓度的增大和下游压力的减小,膜的渗透通量增加,分离因子减小。在操作温度298 K、下游表压4k Pa的条件下,采用膜厚为42μm的PVA/PAN共混膜对90%(质量分数)的异丙醇-水体系进行渗透汽化分离,其渗透通量和分离因子分别达到1 940 g·m-2·h-1和22.2。  相似文献   

9.
使用聚乙烯醇及丙烯酰胺这两种材料,合成了不同枝度的共聚物(PVA-g-AAm),并对两种渗透汽化复合膜(PVA-g-AAm)进行制备。黏均分子量是运用用黏度法测定的,而表征则分别由接触角,红外光谱(FT-IR)和热重(TGA)等方法进行测定。而DMF/水混合体系的渗透汽化分离主要是复合膜的运用,并对膜分离的影响因素进行分析。实验结果显示,分离性能最好的是接枝度为90%的PVA。而PVA的渗透量随着DMF质量分数的增加而减少,PVA的通量最小时是在0.25~0.65 kg/(m~2·h)之间,在0.2~而膜的分离因子达到最大时DMF质量分数为33%。而温度的增加可是渗透量增大,分离因子减小。  相似文献   

10.
制备了壳聚糖-海藻酸钠/聚丙烯腈(CS-SA/PAN)聚离子复合膜,将此膜用于渗透汽化分离乙酸乙酯水溶液.用红外光谱(FT-IR)表征CS、SA、CS/SA均质膜.研究CS-SA/PAN聚离子复合膜的溶胀性、料液浓度和SA质量分数、操作温度对乙酸乙酯水溶液脱水效果的影响.实验表明:CS/SA聚离子均质膜在乙酸乙酯水溶液中的溶胀度随溶液中水质量分数的增加而增大,随SA的质量分数增加而减小,40℃、SA质量分数为2.0%时,CS/SA聚离子均质膜在乙酸乙酯质量分数为97%的水溶液中溶胀度可达51%.随着SA质量分数的增加,CS-SA/PAN聚离子复合膜的渗透通量减小,分离因子增大,40℃、SA质量分数为2.0%时,分离乙酸乙酯质量分数为97%的水溶液,CS-SA/PAN聚离子复合膜渗透通量可达348g/(m^2.h),分离因子为7245.随着料液中水含量的增加和料液温度的升高,膜渗透通量增大,分离系数减小,渗透通量与料液温度的关系能较好地吻合Arrhenius方程.  相似文献   

11.
以聚乙烯醇(PVA)、富马酸(FA)和4A分子筛为原料,利用流延法制备了PVA/FA/4A复合质子交换膜,并对膜的吸水率、溶胀率和离子交换容量、甲醇透过率、电导率等性质进行了测定。结果表明:室温为20℃条件下,测得PVA/FA/4A膜的吸水率为156%,溶胀率为49.1%,离子交换容量为0.804 mmol/L,电导率为3.33×10~(-2)S/cm,甲醇渗透率为0.72×10~(-7) cm~2/S.表明PVA/FA/4A复合质子交换膜具有很好的阻醇效果和高的质子导电性。  相似文献   

12.
Using Na+ form of perfluorosulfonic acid (PFSA) and poly(vinyl alcohol) (PVA) as coating materials, polysulfone (PSf) hollow fiber ultrafiltration membrane as a substrate membrane, PFSA‐PVA/PSf hollow fiber composite membrane was fabricated by dip‐coating method. The membranes were post‐treated by two methods of heat treatment and by both heat treatment and chemical crosslinking. Maleic anhydride (MAC) aqueous solution was used as chemical crosslinking agent using 0.5 wt % H2SO4 as a catalyst. PFSA‐PVA/PSf hollow fiber composite membranes were used for the pervaporation (PV) separation of isopropanol (IPA)/H2O mixture. Based on the experimental results, PFSA‐PVA/PSf hollow fiber composite membrane is suitable for the PV dehydration of IPA/H2O solution. With the increment of heat treatment temperature, the separation factor increased and the total permeation flux decreased. The addition of PVA in PFSA‐PVA coating solution was favorable for the improvement of the separation factor of the composite membranes post‐treated by heat treatment. Compared with the membranes by heat treatment, the separation factors of the composite membranes post‐treated by both heat treatment and chemical crosslinking were evidently improved and reached to be about 520 for 95/5 IPA/water. The membranes post‐treated by heat had some cracks which disappeared after chemical crosslinking for a proper time. Effects of feed temperature on PV performance had some differences for the membranes with different composition of coating layer. The composite membranes with the higher mass fraction of PVA in PFSA‐PVA coating solution were more sensitive to temperature. It was concluded that the proper preparation conditions for the composite membranes were as follows: firstly, heated at 160°C for 1 h, then chemical crosslinking at 40°C for 3 h in 4% MAC aqueous solution. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Chemically stable nanofiltration (NF) composite membranes based on poly(vinyl alcohol) (PVA) and sodium alginate (SA) (hereafter, these membranes are called PVA/SA composite membranes) were prepared by coating microporous polysulfone (PSF) supports with dilute PVA/SA blend solutions. The PSF supports were pretreated with small monomeric compounds to reduce their pore size and to improve their hydrophilicity before coating with the PVA/SA blend solutions. The concentration of the PVA/SA blend solutions ranged from 0.1 to 0.3 wt %. The membranes prepared in this study were characterized with various methods such as SEM, FTIR, permeation tests, and z‐potential measurements. Especially, chemical stabilities of the membranes were tested, using three aqueous solutions with different pHs such as a HCl solution (pH 1), a K2CO3 solution (pH 12.5), and a NaOH solution (pH 13). Their chemical stabilities were compared with that of a polyamide (PA) composite membrane prepared from piperazine (PIP) and trimesoyl chloride (TMC). In this study, it was found that the PVA/SA composite membranes prepared showed not only good chemical stabilities but also good permeation performances in the range from pH 1 to 13. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2471–2479, 2001  相似文献   

14.
Polyvinyl alcohol–tetraethoxysilane–perfluorosulfonic acid (PVA–TEOS–PFSA) hybrid membrane was prepared by sol–gel method through PVA being modified doubly by PFSA and TEOS. With polyacrylonitrile (PAN) ultrafiltration membrane as a substrate membrane, PVA–TEOS–PFSA/PAN composite membrane was fabricated by dip-coating method for pervaporation (PV) dehydration of ethyl acetate (EAc) aqueous solution. The hybrid membrane was characterized by swelling degree, static contact angle, Fourier transform infrared spectra and scanning electron microscope. Effects of PFSA and TEOS contents in coating solution on PV performance of composite membrane were investigated, respectively. With increasing PFSA content, the permeation flux of composite membrane increased, while the separation factor decreased. Just the opposite, the increase of TEOS content resulted in the decrease in permeation flux and the increase in separation factor. In addition, the PV performances of composite membranes were also investigated at different feed temperatures and water concentrations in feed, respectively. The PVA–TEOS–PFSA/PAN composite membrane, which was prepared from coating with PVA/PFSA mass ratio of 80/20 and TEOS content of 20 wt%, exhibited the permeation flux of 347.9 g m?2 h?1 and the separation factor of 2218 for PV dehydration of 2 wt% water of EAc solution at 40 °C.  相似文献   

15.
Polysulfone (PSF) hollow fiber membranes were spun by phase‐inversion method from 29 wt % solids of 29 : 65 : 6 PSF/NMP/glycerol and 29 : 64 : 7 PSF/DMAc/glycol using 93.5 : 6.5 NMP/water and 94.5 : 5.5 DMAc/water as bore fluids, respectively, while the external coagulant was water. Polyvinyl alcohol/polysulfone (PVA/PSF) hollow fiber composite membranes were prepared after PSF hollow fiber membranes were coated using different PVA aqueous solutions, which were composed of PVA, fatty alcohol polyoxyethylene ether (AEO9), maleic acid (MAC), and water. Two coating methods (dip coating and vacuum coating) and different heat treatments were discussed. The effects of hollow fiber membrane treatment methods, membrane structures, ethanol solution temperatures, and MAC/PVA ratios on the pervaporation performance of 95 wt % ethanol/water solution were studied. Using the vacuum‐coating method, the suitable MAC/PVA ratio was 0.3 for the preparation of PVA/PSF hollow fiber composite membrane with the sponge‐like membrane structure. Its pervaporation performance was as follows: separation factor (α) was 185 while permeation flux (J) was 30g/m2·h at 50°C. Based on the experimental results, it was found that separation factor (α) of PVA/PSF composite membrane with single finger‐void membrane structure was higher than that with the sponge‐like membrane structure. Therefore, single finger‐void membrane structure as the supported membrane was more suitable than sponge‐like membrane structure for the preparation of PVA/PSF hollow fiber composite membrane. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 247–254, 2005  相似文献   

16.
Fabrication of high strength PVA/SWCNT composite fibers by gel spinning   总被引:1,自引:0,他引:1  
High-strength composite fibers were prepared from polyvinyl alcohol (PVA) (Degree of polymerization: 1500) reinforced by single-walled carbon nanotubes (SWCNTs) containing few defects. The SWCNTs were dispersed in a 10 wt.% PVA/dimethylsulfoxide solution using a mechanical homogenizer that reduced the size of SWCNT aggregations to smaller bundles. The macroscopically homogeneous dispersion was extruded into cold methanol to form fibers by gel spinning followed by a hot-drawing. The tensile strength of the well-oriented composite fibers with 0.3 wt.% SWCNTs was 2.2 GPa which is extremely high value among PVA composite fibers ever reported using a commercial grade PVA. The strength of neat PVA fibers prepared by the same procedure was 1.7 GPa. Structural analysis showed that the PVA component in the composite fibers possessed almost the same structure as that of neat PVA fibers. Hence a small amount of SWCNTs straightforward enhanced by 0.5 GPa the tensile strength of PVA fibers. The results of mechanical properties and Raman spectra for the SWCNT composites suggest the relatively good interfacial adhesion of the nanotubes and PVA that improves the load transfer from the polymer matrix to the reinforcing phase.  相似文献   

17.
Nanofiltration (NF) composite membranes based on poly(vinyl alcohol) (PVA) and sodium alginate (SA) were prepared by coating PVA/SA (95/5 in wt %) mixture solutions on microporous polysulfone (PSF) supports. For the formation of a defect free thin active layer on a support, the PSF support was multi‐coated with a dilute PVA/SA blend solution. The PVA/SA active layer formed was crosslinked at room temperature by using an acetone solution containing glutaraldehyde as a crosslinking agent. The prepared composite membranes were characterized with a scanning electron microscopy (SEM), a Fourier transform infrared spectroscopy (FTIR), an electrokinetic analyzer (EKA) and permeation tests: The thicknesses of the active layers were about 0.25 μm and 0.01 μm depending on the preparation conditions. The crosslinking reaction of the active layers were completed in less than three minutes via the formation of acetal linkage. The surface of the PVA/SA composite membrane was found to be anionic. The permeation properties of the composite membrane were as follows: 1.3 m3/m2 day of flux and > 95% of rejection at 200 psi for 1000 ppm PEG600 solution. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 347–354, 2000  相似文献   

18.
Novel polyethersulfone (PES)/poly (vinyl alcohol) (PVA)/titanium dioxide (TiO2) composite nanofiltration membranes were prepared by dip-coating of PES membrane in PVA and TiO2 nanoparticles aqueous solution. Glutaraldehyde (GA) was used as a cross-linker for the composite polymer membrane in order to enhance the chemical, thermal as well as mechanical stabilities. TiO2 nanoparticles with different concentrations (0, 0.05, 0.1, 0.5 wt.%) were coated on the surface of PVA/PES composite membrane. The morphological study was investigated by atomic force microscopy (AFM), scanning surface microscopy (SEM) and along with X-ray diffraction (XRD). In addition, the membranes performances, in terms of permeate flux, ion rejection and swelling factor were also investigated. It was found that the increase in TiO2 solution concentration can highly affect the surface morphology and filtration performance of coated membranes. The contact angle measurement and XRD studies indicated that the TiO2 nanoparticles successfully were coated on the surface of PVA/PES composite membranes. However, rougher surface was obtained for membranes by TiO2 coating. The filtration performance data showed that the 0.1 wt.% TiO2-modified membrane presents higher performance in terms of flux and NaCl salt rejection. Finally, TiO2 modified membranes demonstrated the lower degree of swelling.  相似文献   

19.
Three types of anti-UV non-spherical polymer particles (AUNSPP) based on methacrylate and anti-UV PVA nanofiber were synthesized to study and compare their UV protection properties. In the first type of AUNSPP, polystyrene seeds were swollen with dichloromethane solution of 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl) phenol (TINUVIN® 234, which hereafter is called TINUVIN), styrene, divinylbenzene, and 2,2′-azobisisobutyronitrile (AIBN). In the other two types of AUNSPP, poly(methyl methacrylate) seeds were swollen with dichloromethane solution of TINUVIN, methyl methacrylate, lauryl methacrylate, ethylene glycol dimethylacrylate, and AIBN. Subsequently, dichloromethane was evaporated from the swollen microspheres, and polymerization was accomplished by elevating the temperature of swollen particles to 70 °C. The final particles were assigned as P(S)/TINUVIN, P(S-DVB)/TINUVIN, P(LMA–EGDMA)/TINUVIN, and P(MMA–EGDMA)/TINUVIN composite microspheres. Anti-UV PVA nanofibers were prepared by dispersing P(S-DVB)/TINUVIN microparticles in PVA aqueous solution. Finally, this mixture was electrospun under ambient conditions. Particle size, size distribution, and morphology of the particles were investigated by SEM micrograph and image analyzer software (Image J). The presence of TINUVIN in P(S-DVB)/TINUVIN composite particles was confirmed by FTIR and phosphorescence spectroscopy. The UV protective properties of microcomposite particles and anti-UV nanofibers were studied by UV–Vis spectra of their polyurethane (PU) composite film. Comparatively, similar cutoff wavelength effects were observed in the range of 200–400 nm in all the samples. The obtained results showed consistent drop in the UV-blocking efficiency as the UV irradiation time increased. PU/PS/TINUVIN and PU/anti-UV nanofiber composite films showed the worst and best UV-blocking efficiency, respectively. After 200, 400, 600, 800, and 1000 h of UV irradiation time, the blocking efficiency of the PU–PS/TINUVIN composite films dropped from 80 to 72, 68, 65, and 59 %, and that of the PU/anti-UV nanofiber composite films dropped from 98 to 97, 94, 86, and 83 %.  相似文献   

20.
张述林  熊苗 《化学工程师》2010,(9):57-58,63
以聚乙烯醇(PVA)为基体制备PVA/AgNO3复合膜,在NaBH4溶液中用化学还原法制得导电薄膜。研究了复合膜的组成、还原剂浓度、还原时间、还原温度对导电薄膜电阻的影响,得到的工艺条件为:温度20~25℃,AgNO3/PVA的质量比为0.15~0.25,还原剂浓度为0.06%,还原时间为3~4min。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号