首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the study of the impact of energy absorption by wave farms on the nearshore wave climate and, in special, the influence of the incident wave conditions and the number and position of the wave farms, on the nearshore wave characteristics is studied and discussed. The study was applied to the maritime zone at the West coast off Portugal, namely in front of São Pedro de Moel, where it is foreseen the deployment of offshore wave energy prototypes and farms between the 30 m and 90 m bathymetric lines, with an area of 320 Km2. In this study the REFDIF model was adapted in order to model the energy extraction by wave farms. Three different sinusoidal incident wave conditions were considered. Five different wave farm configurations, varying the position of the wave farm, its number and the width of the navigation channels at each wave farm were analysed. The results for each configuration in terms of the change of the wave characteristics (wave height and wave direction) at the nearshore are presented, compared and discussed for three representative wave conditions.  相似文献   

2.
This study aims to investigate wave power along the northern coasts of the Gulf of Oman. To simulate wave parameters the third generation spectral SWAN model was utilized, and the results were validated with buoy and ADCP data. First, annual energy was calculated in the study region with the hindcast data set covering 23 years (1985-2007). The areas with the highest wave resource were determined and the area proximity to the port of Chabahar is suggested as the best site for the installation of a wave farm. Second, the average monthly wave energy in this area was investigated. The most energetic waves are provided by the southeast Indian Ocean monsoon from June to August. Finally, the wave energy resource was characterized in terms of sea state parameters. It was found that the bulk of annual wave energy occurs for significant wave heights between 1 and 3 m and energy periods between 4 and 8 s in the direction of SSE.  相似文献   

3.
The objective of this paper is to provide a synthetic tool for determining expeditiously the wave climate conditions in several areas of the Mediterranean Sea. In the open literature, several authors have already conducted this specific analysis also for the area under examination in this paper. However, the need of discussing aspects strictly related to the design of wave energy harvesters is still relevant. Therefore, considering the variety of devices and the amount of information needed for conducting both an energy-wise optimization and a structural reliability assessment, a holistic view on the topic is provided. Specifically, the paper elucidates the theoretical aspects involved in the estimation of wave energy statistics and in the calculation of relevant return values. Next, it provides synthetic data representing the mean wave power and the return value of extreme events in several coastal areas of the Mediterranean Sea. In this regard, the paper complements information available in the open literature by discussing the influence of the directional pattern of the sea states in the determination of sea state statistics as well as in the design of a wave energy harvester.  相似文献   

4.
Modeled nearshore wave propagation was investigated downstream of simulated wave energy converters (WECs) to evaluate overall near- and far-field effects of WEC arrays. Model sensitivity to WEC characteristics and WEC array deployment scenarios was evaluated using a modified version of an industry standard wave model, Simulating WAves Nearshore (SWAN), which allows the incorporation of device-specific WEC characteristics to specify obstacle transmission. The sensitivity study illustrated that WEC device type and subsequently its size directly resulted in wave height variations in the lee of the WEC array. Wave heights decreased up to 30% between modeled scenarios with and without WECs for large arrays (100 devices) of relatively sizable devices (26 m in diameter) with peak power generation near to the modeled incident wave height. Other WEC types resulted in less than 15% differences in modeled wave height with and without WECs, with lesser influence for WECs less than 10 m in diameter. Wave directions and periods were largely insensitive to changes in parameters. However, additional model parameterization and analysis are required to fully explore the model sensitivity of peak wave period and mean wave direction to the varying of the parameters.  相似文献   

5.
In order to investigate the wave energy resource, the third-generation wave model SWAN is utilised to simulate wave parameters of the China East Adjacent Seas (CEAS) including Bohai, Yellow and East China Sea for the 22 years period ranging from 1990.1 to 2011.12. The wind parameters used to simulate waves are obtained by the Weather Research & Forecasting Model (WRF). The results are validated by observed wave heights of 7 stations. The spatial distributions of wave energy density in the CEAS are analysed under the 22-year largest envelop, mean annual and season averaged wave conditions. Along China east coastal, the largest nearshore wave energy flux occurs along the nearshore zones between Zhoushan Island and south bound of CEAS area. The wave energy resources at Liaodong Peninsula Headland and East Zhoushan Island where economy develops rapidly are also studied in detail. For the two sites, the monthly averaged wave energy features of every year for the 22 years are investigated. The wave energy resources of the two potential sites are characterised in terms of wave state parameters. The largest monthly averaged density for the two sites occurs at Zhoushan Island adjacent sea and amounts to 29 kW/m.  相似文献   

6.
This research presents an estimation of wave energy potential in Sicily (Italy) carried out using both buoy wave measurements from Rete Ondametrica Nazionale (RON), the Italian Government wave buoy network, and wave parameter data by ERA-INTERIM, a recent meteorological reanalysis project of the European Centre for Medium-Range Weather Forecasts (ECMWF). Starting from these offshore data, we first identified the western part of Sicily as the area with a higher availability of offshore wave energy; subsequently, we selected a study area in the western part of the south coast and assessed the nearshore potential energy by performing propagation using a spectral model (SWAN). The nearshore analysis highlights the presence of a “hot spot” relatively close to the coast where energy concentration produces even higher energy availability than offshore. Based on this result, the site may be a possible location for a wave energy farm, provisional on a technical–economic feasibility analysis.  相似文献   

7.
This paper presents a study of large-scale wave energy integration in which transmission constraints are considered. The Vancouver Island electrical grid is considered and is modelled using PLEXOS® Integrated Energy Model software. The model incorporates the current transmission grid, the existing fleet of main generation stations and ten potential wave farm sites with a total generation capacity of 500 MW. The objectives are to investigate: 1) the potential contribution of wave power toward energy self-sufficiency, 2) the effects of transmission constraints on the viability of alternative wave farm sites, 3) the impacts of wave integration on the load profile. Findings suggest that wave energy integration can significantly reduce the energy dependency on neighbouring jurisdictions but the current grid infrastructure is not adequate to fully support 500 MW of wave power. In this regard, it is shown that potential wave power integration can significantly benefit from transmission expansion for particular pathways. Further, results show that wave integration leads to reductions in the share of energy supplied from other sources and that this reduction follows an annual pattern. This periodic trend is particularly important for a hydro-dominated (energy-limited) grid where water level in reservoirs is managed on monthly and yearly bases.  相似文献   

8.
The offshore wave energy resource in the East China Sea (ECS) off the coast of the southern East China is assessed using wave buoy data covering the period of 2011−2013. It is found that the averaged offshore wave power was approximately 13 kW m−1 in the region of interest. Most of the offshore wave energy in the ECS is contributed by the sea states with significant wave heights between 1.5 m and 3.5 m and with wave energy periods between 6 s and 8 s. Seasonal variations are detected in the wave characteristics of significant wave height and wave power. The predominant wave directions are mainly from the II quadrant and the IV quadrant, respectively, in winter and summer, in accordance with the monsoon characteristics in the ECS. Wave heights, periods and power are generally higher in winter and autumn, and weaker in spring and summer; however, extreme values occur in some summer and autumn months due to the extreme conditions caused by typhoons passing over this region. These extreme sea states do not contribute much to the total annual energy, mainly because of their low occurrence, but may bring risks to the wave energy converters.  相似文献   

9.
Sea waves energy represents a renewable and sustainable energy resource, that nevertheless needs to be further investigated to make it more cost-effective and economically appealing. A key step in the process of Wave Energy Converters (WEC) deployment is the energy resource assessment at a sea site either measured or obtained through numerical model analysis. In these kind of studies, some approximations are often introduced, especially in the early stages of the process, viz. waves are assumed propagating in deep waters without underneath ocean currents. These aspects are discussed and evaluated in the Adriatic Sea and its northern part (Gulf of Venice) using locally observed and modeled wave data. In particular, to account for a “state of the art” treatment of the Wave–Current Interaction (WCI) we have implemented the Simulating WAves Nearshore (SWAN) model and the Regional Ocean Modeling System (ROMS), fully coupled within the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) system. COAWST has been applied to a computational grid covering the whole Adriatic Sea and off-line nested to a high-resolution grid in the Gulf of Venice. A 15-year long wave data set collected at the oceanographic tower “Acqua Alta”, located approximately 15 km off the Venice coast, has also been analyzed with the dual purpose of providing a reference to the model estimates and to locally assess the wave energy resource. By using COAWST, we have quantified for the first time to our best knowledge the importance of the WCI effect on wave power estimation. This can vary up to 30% neglecting the current effect. Results also suggest the Gulf of Venice as a suitable testing site for WECs, since it is characterized by periods of calm (optimal for safe installation and maintenance) alternating with severe storms, whose wave energy potentials are comparable to those ordinarily encountered in the energy production sites.  相似文献   

10.
In the last decade, multiple studies focusing on national-scale assessments of the ocean wave energy resource in Australia identified the Southern Margin to be one of the most energetic areas worldwide suitable for the extraction of wave energy for electricity production. While several companies have deployed single unit devices, the next phase of development will most likely be the deployment of parks with dozens of units, introducing the risk of conflicts within the marine space.This paper presents a geo-spatial multi-criteria evaluation approach to identify optimal locations to deploy a wave energy farm while minimizing potential conflicts with other coastal and offshore users. The methodology presented is based around five major criteria: ocean wave climatology, nature of the seabed, distance to key infrastructure, environmental factors and potential conflict with other users such as shipping and fisheries.A case study is presented for an area off the south-east Australian coast using a total of 18 physical, environmental and socio-economic parameters. The spatial restrictions associated with environmental factors, wave climate, as well as conflict of use, resulted in an overall exclusion of 20% of the study area. Highly suitable areas identified ranged between 11 and 34% of the study area based on scenarios with varying criteria weighting. By spatially comparing different scenarios we identified persistence of a highly suitable area of 700 km2 off the coast of Portland across all model domains investigated. We demonstrate the value of incorporation spatial information at the scale relevant to resource exploitation when examining multiple criteria for optimal site selection of Wave Energy Converters over broad geographic regions.  相似文献   

11.
Some relevant patterns for the wave energy spatial distribution in the Portuguese nearshore are analyzed in this work. A medium term analysis of the wave climate in the target area was first carried out based on recent buoy measurements covering the 10-year period 1994–2003. A wave prediction system based on the two state-of-the-art spectral models, WAM and SWAN, was used to evaluate the wave conditions. In order to design better model configurations, validation tests with this system are performed. Special attention is paid to the whitecapping process which is considered the weak link in deep water wave modelling. The spatial distributions of the wave energy were analysed in three different computational domains for both high and average wave conditions. Four case studies were considered for the wave energy assessments. The first corresponds to a common energetic peak, whereas the other three to different patterns of average energetic conditions. In this way some areas with greater potential from the energetic point of view have been identified.  相似文献   

12.
13.
The substantial wave energy resource of the US Pacific Northwest (i.e. off the coasts of Washington, Oregon and N. California) is assessed and characterized. Archived spectral records from ten wave measurement buoys operated and maintained by the National Data Buoy Center and the Coastal Data Information Program form the basis of this investigation. Because an ocean wave energy converter must reliably convert the energetic resource and survive operational risks, a comprehensive characterization of the expected range of sea states is essential. Six quantities were calculated to characterize each hourly sea state: omnidirectional wave power, significant wave height, energy period, spectral width, direction of the maximum directionally resolved wave power and directionality coefficient. The temporal variability of these characteristic quantities is depicted at different scales and is seen to be considerable. The mean wave power during the winter months was found to be up to 7 times that of the summer mean. Winter energy flux also tends to have a longer energy period, a narrower spectral width, and a reduced directional spread, when compared to summer months. Locations closer to shore, where the mean water depth is less than 50 m, tended to exhibit lower omnidirectional wave power, but were more uniform directionally. Cumulative distributions of both occurrence and contribution to total energy are presented, over each of the six quantities characterizing the resource. It is clear that the sea states occurring most often are not necessarily those that contribute most to the total incident wave energy. The sea states with the greatest contribution to energy have significant wave heights between 2 and 5 m and energy periods between 8 and 12 s. Sea states with the greatest significant wave heights (e.g.>7 m) contribute little to the annual energy, but are critically important when considering reliability and survivability of ocean wave energy converters.  相似文献   

14.
Wave fields in the Bohai Sea are continuously simulated by the third-generation wave model SWAN in order to determine the wave energy resources from 1985 to 2010. The wind parameters used to simulate waves are obtained by the Regional Atmospheric Modeling System (RAMS). Comparisons of significant wave heights between simulations and observations show good agreement. The spatial distributions of mean monthly and annual averaged significant wave height and wave power flux are presented. Wave energy roses and temporal variations of average wave power density at five typical points in the Bohai Sea are calculated. Furthermore, the correlations between significant wave height and wave energy period are studied in scatter and energy diagrams.  相似文献   

15.
16.
This paper presents an evaluation of the efficiency of twelve state of the art wave energy converters in the Atlantic Ocean, in the vicinity of the most important European islands and archipelagos (Iceland, Archipelago of Azores, Madeira Archipelago and Canary Islands). An analysis of the wave conditions in the target areas was first performed by considering a 10-year interval (2004–2013) of wave data provided by the European Centre for Medium-Range Weather Forecasts. For this reason, twenty reference points, all located in water depths of about 50 m, were defined. In order to provide a general picture of the wave potential and also to highlight the presence of some hot spots, several wave parameters, such as significant wave height, mean wave direction and wave power, were evaluated. Then, for every nearshore area, based on the bivariate distributions of the sea states occurrences and also on the power matrix of each device, the performances of each wave energy converter were estimated in terms of the expected electrical power. The results of the present work provide valuable information for the future wave farm projects, which could become in the near future a reliable and effective way to produce energy in island environments.  相似文献   

17.
The present experimental study investigates the generation and propagation of regular water waves and their interactions with an in-house fabricated horizontal-axis 3-bladed Savonius rotor in an experimental wave flume (EWF) equipped with a piston-type wave maker with active absorption capability to assess the rotor performance for different parametric conditions namely, wave height, wave period and submergence level in intermediate-to-shallow water depths. The motion of the wave particles around the Savonius rotor is observed during the experiments as well as measuring the power and torque performance of the rotor to make a reliable assessment of the water movement with the rotor positioning for different inflow wave boundary conditions. The wave-to-mechanical energy conversion efficiency (ECE) of the present device is determined for each case to suggest a possible optimum positioning accompanied with optimum wave heights and frequencies for the manufactured small scale prototype. The present results suggest that experimental solutions within the wave flume can provide a proper guideline for performance analysis of such devices in intermediate-to-shallow water depths for further studies of optimization of design of Savonius rotor type sea and/or ocean wave energy conversion devices for different operating conditions provided that optimum physical flow conditions are satisfied.  相似文献   

18.
The ocean waves are an important renewable energy resource that, if extensively exploited, may contribute significantly to the electrical energy supply of countries with coasts facing the sea. A wide variety of technologies has been proposed, studied, and in some cases tested at full size in real ocean conditions. Oscillating-water-column (OWC) devices, of fixed structure or floating, are an important class of wave energy devices. A large part of wave energy converter prototypes deployed so far into the sea are of OWC type. In an OWC, there is a fixed or floating hollow structure, open to the sea below the water surface, that traps air above the inner free-surface. Wave action alternately compresses and decompresses the trapped air which is forced to flow through a turbine coupled to a generator. The paper presents a comprehensive review of OWC technologies and air turbines. This is followed by a survey of theoretical, numerical and experimental modelling techniques of OWC converters. Reactive phase control and phase control by latching are important issues that are addressed, together with turbine rotational speed control.  相似文献   

19.
A realistic performance analysis of oscillating water column wave energy converters (WECs) addresses to a set of non-linear differential equations that need to be integrated in time, by using a stochastic approach, under the hypothesis of random wind-generated sea waves, for all the sea states which characterize the location of the system. Non-linearities of the differential equations have several origins:
• minor and major losses of the unsteady flow of water and air;
• compressibility of air and heat exchange with the walls of the air chamber;
• non-linear characteristics of the turbine.
Under the hypothesis of random sea waves with Gaussian distribution, the authors propose an original methodology for linearizing the differential equations that describe the flow motion inside a wholly submerged WEC. Under such hypothesis, the linearized model can be used for predicting the power output by means of the calculations in the frequency domain and for control design. The developed methodology has been applied to the estimation of the performance of the new “resonant sea wave energy converters”, called REWEC, patented by Boccotti in 1998, and consisting of several caissons, characterized by a structure similar to the caissons of the traditional breakwaters and placed on the seabed, close one to each other, to form a submerged breakwater. Each caisson is connected to a vertical duct wholly beneath the sea level, where a hydraulic Wells turbine is placed.The matching between turbine and resonance characteristic of the system is carefully analysed in order to maximize the energy conversion efficiency.Some results, given for a small installation in the Mediterranean sea, confirm that the REWEC system is able to absorb a large share of the incident wave energy due to a very simple regulation system which permits the tuning on sea states with different significant heights.  相似文献   

20.
Offshore and inshore wave energy assessment: Asturias (N Spain)   总被引:1,自引:0,他引:1  
The offshore and inshore wave energy resource in Asturias (N Spain) is studied using wave buoy data and a hindcast dataset spanning 44 years (1958–2001). Offshore average wave power and annual wave energy values are found to exceed 30 kW/m and 250 MWh/m, respectively, at 7 of the 11 study sites. This substantial resource is characterised in terms of the sea states involved. Most of the energy is provided by IV quadrant waves with significant wave heights between 2 m and 5 m and energy periods between 11 s and 13 s. After analysing the offshore resource, numerical modelling is used to investigate the inshore wave patterns. A coastal wave model is validated with wave buoy data and applied to three case studies representative of storm, winter and summer conditions. Inshore wave energy concentration areas, of interest as prospective wave farm sites, are found to occur west of Cape Vidio and on the western side of the Cape Peñas peninsula. The methodology used in this investigation may serve as a model for wave energy assessments in other regions, especially where both the offshore and inshore resources are of consequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号