首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Southeastern Anatolia Project (GAP) region in Turkey is rich in water for irrigation and hydroelectric power. The Euphrates and Tigris Rivers represent over 28% of the nation's water supply by rivers, and the economically irrigable areas in the region make up 20% of those for the entry country. Turkey has a total gross hydropower potential of 433 GWh/yr, but only 125 GWh/yr of the total hydroelectric potential of Turkey can be economically used. By the construction of new hydropower plants, 36% of the economically usable potential of the country would be tapped. The GAP region has a 22% share of the country's total hydroelectric potential, with plans for 22 dams and 19 hydroelectric power plants. Once completed, 27 billion kWh of electricity will be generated annually.  相似文献   

2.
Renewable energy resources provide a large share of the total energy consumption of many developing countries. Turkey's renewable sources are the second largest source for energy production after coal. About two-thirds of the renewable energy produced is obtained from biomass, while the rest is mainly from hydroelectric energy. Hydropower is today the most important kind of renewable and sustainable energy. In Turkey, most of the important water power plants have been developed; hence, only a modest increase in the hydroelectric generating capability can be anticipated in the next two decades. Turkey has a gross annual hydro potential of 433,000 GWh, which is almost 1% of world total potential. Its share is about 16% of the total hydropower capacity in Europe. The total gross electricity production of Turkey has reached about 140,283 GWh in 2003, 75% of this is produced from thermal sources and the reminder 25% from hydropower. The main objective in doing the present study is to investigate the sustainable development of Turkey's small hydropower (SHP) plants. Development of SHP began in 1902 in Turkey. Total installed projects capacity of SHP plant is 2.45% and the total energy potential is about 2.96%, which have installed capacity less than 10 MW.  相似文献   

3.
In this study, the feasibility of hydroelectric power generation from the Kayabogazi dam, which was built by The State Hydraulic Works of Turkey (DSI) in 1987 in the town of Tavsanli, Kutahya, for irrigation and flood control purposes is investigated. Since a certain amount of water is supplied from the dam to the town of Tavsanli as drinking water, that amount is deducted from the total and is not allowed to be used in the process of electric power generation. By evaluating the amount of incoming water to the Kayabogazi dam in the period of 1995 and 2003 years, the most agreeable turbine type and size is decided for a small hydropower plant (SHP). In this purpose, seven different cases have been taken into consideration. As a conclusion, the case used three turbines which one of them is installed to utilize from the higher flow rates has been determined as the best configuration. In this study, a power generation ranging between 0.313 and 4.997 MW has been achieved in the viewpoint of installed capacity for Kayabogazi dam. Hence, it has been estimated an electricity generation up to 10,579 MWh per annum.  相似文献   

4.
Recep Bakis   《Renewable Energy》2007,32(10):1723-1738
The hydropower is the leading source of renewable energy. It provides more than 97% of all electricity generated by renewable sources. The main advantage of hydro systems is elimination of the cost of fuel. Hydropower on a small-scale is in most cases “run-of-river”, with no dam or water storage, and is one of the most cost-effective and environmentally benign energy technologies to be considered both for rural electrification in less developed countries and further hydro developments in Europe. Multipurpose dams, like Porsuk Dam in Eskisehir, are constructed with the aim of supplying domestic, irrigation and industrial water except electricity generation. Porsuk basin has suitable valley in upstream of existing Porsuk Dam for realizing of small reservoirs. The discharge capacity of Porsuk River is appropriate only to install Small Hydropower Plants (SHPs). For the sustainable management of Porsuk River water, except existing Porsuk Dam, it is required to construct a few new dams on this river. The valley of Porsuk River is suitable to construct concrete faced rockfill dams (CFRDs). For this propose, initially, historical data of inlet and outlet of Porsuk reservoir has been investigated. Historical data have been analyzed on a monthly basis for 32 years. It has been calculated that the electricity generation using this potential is 20.69 GWh/year with 4.2 MW installed capacity from Porsuk Dam. For the evaluation of all the Porsuk River water potential, it is required constructing at least two new dams in the hilly Porsuk basin. It is calculated that the total electricity generation from these two will reach up to 37.79 GWh/year with 2×2.8 MW installed capacity.  相似文献   

5.
This paper presents the historical development of Turkey’s electricity power sector, the efforts for introducing competition in the power industry in Turkey, and the concerns regarding restructuring in Turkey. The contribution of the hydropower energy potential in Turkey to the reconstruction of the electricity structure in Turkey is also investigated. Then, among the 25 hydrological basins in Turkey, the Eastern Black Sea Basin located in the northeast of Turkey, which has great advantages from the view point of small hydropower potential or hydropower potential without storage, is chosen as the case study to carry out some investigations concerning its potential and to analyze the contribution of the private sector (the corporate body) in regard to the development of hydro potential in this basin within the scope of the 4628 Electricity Market Law. With this law, concerning the restructuring of the electricity market, private sector investments in this segment have increased. In total, 1524 hydroelectric power projects with 22 360 MW installed capacity has been implemented until January 22nd, 2009 and this figure is continuously rising.  相似文献   

6.
Over the last two decades, global electricity production has more than doubled and electricity demand is rising rapidly around the world as economic development spreads to emerging economies. Not only has electricity demand increased significantly, it is the fastest growing end-use of energy. Therefore, technical, economic and environmental benefits of hydroelectric power make it an important contributor to the future world energy mix, particularly in the developing countries. This paper deals with policies to meet increasing energy and electricity demand for sustainable energy development in Turkey. Turkey has a total gross hydropower potential of 433 GWh/year, but only 125 GWh/year of the total hydroelectric potential of Turkey can be economically used. By the commissioning of new hydropower plants, which are under construction, 36% of the economically usable potential of the country would be tapped. Turkey's total economically usable small hydropower potential is 3.75 GWh/year.  相似文献   

7.
Main electrical energy sources of Turkey are thermal and hydraulic. Most of the thermal sources are derived from natural gas. Turkey imports natural gas; therefore, decreasing usage of natural gas is very important for both economical and environmental aspects. Because of disadvantages of fossil fuels, renewable energy sources are getting importance for sustainable energy development and environmental protection. Among the renewable sources, Turkey has very high wind energy potential. The estimated wind power capacity of Turkey is about 83,000 MW while only 10,000 MW of it seems to be economically feasible to use. Start 2009, the total installed wind power capacity of Turkey was only 4.3% of its total economical wind power potential (433 MW). However, the strong development of wind energy in Turkey is expected to continue in the coming years. In this study, Turkey's installed electric power capacity, electric energy production is investigated and also Turkey current wind energy status is examined.  相似文献   

8.
Turkey has a total gross hydropower potential of 433 GWh/year, but only 125 GWh/year of the total hydroelectric potential of Turkey can be economically used. By the commissioning of new hydropower plants, which are under construction, 36% of the economically usable potential of the country would be tapped. Turkey presently has considerable renewable energy sources. The most important renewable sources are hydropower, biomass, geothermal, solar and wind. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. Over the last two decades, global electricity production has more than doubled and electricity demand is rising rapidly around the world as economic development spreads to emerging economies. Not only has electricity demand increased significantly, it is the fastest growing end-use of energy. Therefore, technical, economic and environmental benefits of hydroelectric power make it an important contributor to the future world energy mix, particularly in the developing countries.  相似文献   

9.
The most important renewable sources are hydropower, biomass, geothermal, solar and wind. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. In recently, electricity has demand increased significantly; it is the fastest growing end-use of energy. Therefore, technical, economic and environmental benefits of hydroelectric power make it an important contributor to the future world energy mix. In the world, particularly in the developing countries renewable energy resources appear to be one of the most efficient and effective solutions for sustainable energy development in Turkey. Turkey's geographical location has several advantages for extensive use of most of the renewable energy sources. This paper deals with policies to meet increasing energy and electricity demand for sustainable energy development in Turkey. Turkey has a total gross hydropower potential of 433 GWh/year, but only 125 GWh/year of the total hydroelectric potential of Turkey can be economically used.  相似文献   

10.
In Spain, solar electricity (photovoltaic and thermoelectric) has reached a stable annual capacity factor above 20% since 2009; while wind achieved 23% since more than 10 years ago. This is the demonstration of an ongoing transition towards a more sustainable energy mix, further corroborated by the reduction of the capacity factor of gas-fired technology, which has seen a decline to values lower than 10% after an initial promising rise; this is a very low value for a fossil-fuel technology. Additionally, hydro installed capacity, which has been stable for the past 20 years, have demonstrated that can be used as a back-up power source in combination with solar and wind electricity, and it is capable of producing energy peaks that may increase from a stable base of 2000 GWh/month up to 6000 GWh/month and therefore meet demand at some particular times when solar and wind are generating less electricity without the need of installing new additional capacity at national level.  相似文献   

11.
T. Blackler  M.T. Iqbal   《Renewable Energy》2006,31(4):489-502
The largest commercial thermal generating plant in Newfoundland is in Holyrood, Conception Bay. It has a generating capacity of 500 MW of electricity. During peak generation (winter months), the plant runs at near capacity with generation reaching as high as 500 MW. In addition to thermal generation about 900 MW is supplied to the grid by a number of hydro plants. This paper presents a pre-feasibility study of 25% of thermal power generation using wind turbines in the Holyrood area. Purpose of supplementing power generation from the thermal plant is to reduce emissions and fuel costs. Simulation results indicate that 16 Enercon's E-66, 2 MW wind turbines if installed near the site will provide a 25% renewable fraction. Supplementing 25% of the generation at Holyrood with wind power will reduce the cost of energy by CA$0.013/kWh. It will also reduce carbon emissions by almost 200,000 tons/year. This study indicates that a wind farm project at the Holyrood thermal generation station site is feasible.  相似文献   

12.
Economic development in recent decades has been characterised by the increased use of fossil fuels. Clearly, a significant amount of this energy does not fall in line with the principles of sustainable development, either because of its contaminating effect or because of its non-renewable nature.Today, Navarre generates around 60% of its electricity requirements by means of wind power and small hydropower stations. On the downside, Navarre's energy consumption is above average for the European Union and its economy is growing at an annual rate in excess of 5%. The Castejón (800 MW) thermal power stations, scheduled for enlargement, generate more energy than Navarre's entire wind power sector.In terms of hydroelectric power, there are around 200 small hydropower plants in operation. In addition, the Autonomous Community of Navarre has installed a biomass plant in Sangüesa, with an installed output of 25 MW, annually generating 200 GWh through the combustion of 160,000 t of cereal straw.In addition, Navarre, specifically Tudela, is the site of the largest solar energy plant in Spain, producing 1.2 MWp, following its connection to the grid at the beginning of the year. Two thirds of the 10,080 panels are arranged in a central body and the remaining third are panels pertaining to different technologists and technologies involved in research and development.  相似文献   

13.
Over the last two decades; technical, economic and environmental benefits of hydroelectric power make it an important contributor to the future world energy mix, particularly in the developing countries. Turkey has a total gross hydropower potential of 433 GWh/yr, but only 125 GWh/yr of the total hydroelectric potential of Turkey can be economically used. By the commissioning of new hydropower plants, which are under construction, 36% of the economically usable potential of the country would be tapped. Turkey's total economically usable small hydropower potential is 3.75 GWh/yr. It is expected that the demand for electric energy in Turkey will be about 580 billion kWh by the year 2020. Turkey is heavily dependent on expensive imported energy sources that place a big burden on the economy and air pollution is becoming a great environmental concern in the country. In this regard, renewable energy resources appear to be the one of the most efficient and effective solutions for clean and sustainable energy development in Turkey. Environmentally friendly energy development has enormous implications for developing countries as major emitters due to their rapid economic and population growth. With some possible options, the paper concludes that the reduction of emissions can only be achieved when policies are supportive and well targeted, standards and incentives are realistic and flexible, and the public is actively responsive to environmental degradation. Turkey's high rate of energy-related carbon emissions growth is expected to accelerate, with emissions climbing from 57 million tons in 2000 to almost 210 million tons in 2020. Carbon intensity in Turkey is higher than the western developed nation average. In this regard, renewable energy resources appear to be one of the most efficient and effective solutions for clean and sustainable energy development in Turkey. This paper deals with Turkey's renewables energy sources for sustainable environment.  相似文献   

14.
The foreseen depletion of the traditional fossil fuels for the forthcoming decades is forcing us to seek for new sustainable and non-pollutant energy sources. Renewable energies rely on a decentralized scheme strongly dependent on the local resources availability. In this work, we tackle the study of the renewable energies potential for an intensive electricity production in the province of Jaén (southern Spain) which has a pronounced unbalance between its inner electricity production and consumption. The potential of biomass from olive pruning residues, solar photovoltaics (PV) and wind power has been analyzed using Geographical Information System tools, and a proposal for a massive implementation of renewable energies has been arisen. In particular, we propose the installation of 5 biomass facilities, totaling 98 MW of power capacity, with an estimated annual production of 763 GWh, 12 PV facilities, totaling 420 MW of power capacity, with an estimated annual production of 656 GWh and 506 MW of wind power capacity in a number of wind farms, with an estimated annual production of 825 GWh. Overall, this production frame would meet roughly a 75% of the electricity demands in the province and thus would mitigate the current unbalance.  相似文献   

15.
Because of extensive exploitation, fossil fuels are gradually becoming depleted and global warming issues are increasing. Therefore, all nations must develop alternative energy resources to reduce the potential risk of exhausting the available fossil fuel energy supply and to resolve environmental degradation.The amount of sunlight and installed power capacity are crucial factors that influence solar photovoltaic (PV) efficiency. Among domestic and international studies, numerous scholars have proposed various installed power capacity assessment models, which typically calculate areas based on sub-fields, ground floors or per capita. However, an evaluation of the potential of solar PV power generation on rooftops indicated that the shadow effect caused by building structures substantially influence the amount of installed power capacity. This study aims to effectively compute the shadow areas (shaded areas) on rooftops. By using the Hillshade module, the buildings' elevation data and the solar azimuth and altitude angles at different hours were calculated to obtain the hourly sun/shade grayscale values. The grayscale values were then integrated into binary images to calculate the shadow areas on rooftops.This study suggests that the rooftop solar photovoltaic installation capacity is some 12,428.5 MW and power generation capacity 15,423.75 GWh in Taiwan.  相似文献   

16.
This paper presents a wind energy assessment and a wind farm simulation in the city of Triunfo in the state of Pernambuco in the northeast region of Brazil. The wind data were obtained from the SONDA (Sistema de Organização Nacional de Dados Ambientais) project’s meteor station (wind speed, wind direction and temperature) at both heights of 50 m during a period of time of 30 months. The Triunfo wind characterization and wind power potential assessment study shows an average wind speed (V) of 11.27 m/s (predominant Southeast wind direction), an average wind power density (P/AT) of 1.672 W/m2 and Weibull parameters shape (K) and scale (A) respectively equal to 2.0 and 12.7 m/s. Those values demonstrate an important wind potential in this region for future wind farm prospection. The wind farm (TRI) was simulated by using 850 kW wind turbines given a total of 20 MW installed. The simulated results show(s) an AEP (annual energy produced) of 111.4 GWh, a capacity factor (Cf) of 62% and a total of 5.462 h of operation by year (full load hours). The economical simulated results show(s) a Pay-back of 3 years Internal Rate of Return (IRR) of 47% and Net Present Value (NPV) of 85.506 k€ (both in a period of time of 20 years).  相似文献   

17.
About 61% of the total installed capacity for electrical power generation in Turkey is provided by thermal resources, while 80% of the total electricity is generated from thermal power plants. Of the total thermal generation, natural gas accounts for 49.2%, followed by coal for 40.65%, and 9.9% for liquid fuel. This study deals with investigation of the Turkish coal-fired power plants, examination of an example plant and rehabilitation of the current plants. Studied plant has a total installed capacity of 2 × 160 MW and has been recently put into operation. It is the first and only circulating fluidized bed power plant in the country. Exergy efficiencies, irreversibilities, and improvement factors of turbine, steam generator and pumps are calculated for plant selected. Comparison between conventional and fluidized bed power plant is made and proposed improving techniques are also given for conventional plants.  相似文献   

18.
The current study develops a hydro-based hydrogen production concept and investigates the utilization of hydroelectric power for green hydrogen production in Turkey. For the hydroelectric power potential calculations, the installed and under construction hydroelectric power plants, run-of-river systems, and reservoir dams are considered for the entire country. The potential capacities of each city are estimated based on the available official and published data by the government agencies, and some reasonable assumptions are also made for detailed analysis and assessment for a feasible hydrogen economy in the country. The results obtained here clearly show that the contribution of hydroelectric energy to hydrogen production is considerable high in promoting countries towards leadership in the field of green hydrogen production. Based on the analysis results, Turkey's hydro-based green hydrogen production potential is estimated to be 2.26 megatons. Şanlıurfa, Elazığ, Diyarbakır, Artvin, and Adana are cities with the highest green hydrogen production potential from hydroelectric power with an annual production capacity of 233.09, 204.92, 175.35, 157.28, and 140.8 kilotons, respectively. The results of this study are expected to help the policymakers to use hydropower energy for planning and developing action plan for the country and help overcome carbon-based fuel usage and its associated pollution. The main idea is to prepare hydrogen maps in detail for each region in Turkey, based on the hydro energy potential by using electrolysers. This, in turn, can be considered in the context of the current policies of the local communities and policymakers to prepare a sustainable energy roadmap for the country.  相似文献   

19.
This study provides information on power generation via geothermal resources and sector development. The first instance of power generation from geothermal resources was performed by a state-owned power plant at Kızıldere-Denizli, whereas the first private sector investment was the Dora-I power plant, commissioned in 2006. Legislation regulating rights ownership and certification laws was issued in 2007. The installed capacity of the geothermal resources is 311.871 MW for 16 power plants, and power generation licenses were issued for 713.541 MW at the end of 2012. The total potential geothermal power that can be generated in Turkey is estimated to be approximately 2000 MW. The geothermal fields in Turkey produce high levels of greenhouse gases, which have been deemed highly responsible for global warming. Due to high CO2 emissions, the geothermal energy sector risks a carbon tax in the near future. For certain geothermal resources, multiple investors produce electricity from the same resource. The sector will inevitably experience severe damage unless permanent solutions are devised for problems related to sustainably managing geothermal resources and environmental problems.  相似文献   

20.
Renewable energy is accepted as a key source for the future, not only for Turkey but also for the world. Turkey has a considerably high level of renewable energy sources that can be a part of the total energy network in the country. Turkey is located in the Mediterranean sector of Alpine–Himalayan Tectonic Belt and has a place among the first seven countries in the world in the abundance of geothermal resources. The share of its potential used is, however, only about 2–3%.The main objective of the present study is to review the development of geothermal energy (GE) utilization in Turkey, giving its historical development and opportunities. GE is used for electric power generation and direct utilization in Turkey, which is among the first five countries in the world in geothermal direct use applications. Direct use of geothermal resources has expanded rapidly last 36 years from space heating of single buildings to district heating, greenhouse heating, industrial usage, modern balneology and physical treatment facilities.Turkey presently has one operating geothermal power plant, located near Denizli City in Western Anatolia with an installed capacity of 20.4 MWe and an electrical energy production of 89,597 MW h in 2001. Recently, the total installed capacity has reached 820 MWt for direct use. The total area of geothermal heated greenhouses exceeded over 35 ha with a total heating capacity of 81 MWt. Ground-source (or geothermal) heat pumps (GSHPs) have also been put on the Turkish market since 1998. Though there are no Turkish GSHP manufactures as yet, 207 units have been installed in the country to date, representing a total capacity of 3 MW.GE is a relatively benign energy source, displaying fossil fuels and thus reducing greenhouse gas emissions. So, it is expected that GE development will significantly speed up in the country if the geothermal law becomes effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号